

Particle identification at BigRIPS and its optimization in the off-line analysis

N. Fukuda et al., Nucl. Instr. Meth. B 317 (2013) 323

- TOF- $B\rho$ - ΔE method
- Trajectory reconstruction for $B\rho$ determination
- Background removal (*Please see the above paper*.)
 - How to identify and remove the events whose charge state changes at F5

Naoki FUKUDA, BigRIPS team, RIKEN Nishina Center

Particle identification scheme at BigRIPS

TOF- $B\rho$ - ΔE method with trajectory reconstruction

A/Q resolution: High enough to identify charge states of fragments

*B*ρ 01 = 7.990 Tm, F1 deg Al 2.18mm

Identification of 45 New Neutron-Rich Isotopes by In-Flight fission of a 238U Beam at 345 MeV/nucleon T. Ohnishi et al., J. Phys. Soc. Jpn **79** (2010) 073201 6.1σ separation

Example:
PID for fission fragments produced by in-flight fission of ²³⁸U beam

²³⁸U 345 MeV/u + Pb 0.95 mm (+Al 0.3 mm) *Bρ* = 7.706 Tm, F1 deg. Al 2.56 mm, F5 deg. Al 1.8 mm

Identification of 45 New Neutron-Rich Isotopes by In-Flight fission of a 238U Beam at 345 MeV/nucleon T. Ohnishi et al., J. Phys. Soc. Jpn **79** (2010) 073201

by using the position and angle measured at the focuses (such as F5x, F5a, F3x) and the experimentally determined transfer matrices as follows:

Trajectory reconstruction

F3-F5 case $\begin{cases} x_{5} = (x | x)x_{3} + (x | a a_{3} + (x | \delta \delta_{35}) \\ + (x | xx)x_{3}^{2} + (x | xa)x_{3}a_{3} + (x | x\delta)x_{3}\delta_{35} + (x | aa)a_{3}^{2} + (x | a\delta)a_{3}\delta_{35} \\ + (x | \delta\delta)\delta_{35}^{2} + (x | yy)y_{3}^{2} + (x | yb)y_{3}b_{3} + (x | bb)b_{3}^{2} \\ a_{5} = (a | x)x_{3} + (a | a a_{3}) + (a | \delta \delta_{35}) \\ + (a | xx)x_{3}^{2} + (a | xa)x_{3}a_{3} + (a | x\delta)x_{3}\delta_{35} + (a | aa)a_{3}^{2} + (a | a\delta)a_{3}\delta_{35} \\ + (a | \delta\delta)\delta_{35}^{2} + (a | yy)y_{3}^{2} + (a | yb)y_{3}b_{3} + (a | bb)b_{3}^{2} \end{cases}$

 $B\rho = B\rho_0 (1+\delta)$ $B\rho_0: \text{ Central } B\rho \text{ value } \qquad \text{Magnetic field measured by NMR probes}$ The central trajectory radii deduced from the magnetic field-map data.

First-order matrix elements: Derived directly from the measurement
Higher-order matrix elements: Determined by the empirical method

Next

Determination of first-order transfer matrix elements

$$\begin{cases} x_5 = (x \mid x)x_3 + (x \mid a)a_3 + (x \mid \delta)\delta_{35} \\ a_5 = (a \mid x)x_3 + (a \mid a)a_3 + (a \mid \delta)\delta_{35} \end{cases}$$

Matrix elements	Experimentally	Calculated using
	derived	COSY INFINITY
(x x)	0.934 ± 0.094	0.927
(a x)	-0.265 ± 0.138	-0.020
(x a)	0.191 ± 0.039	-0.005
(a a)	1.064 ± 0.009	1.079
$(x \delta)$	31.84±0.090	31.67
$(a \delta)$	0.310 ± 0.209	0.015
Determinant	1.044 ± 0.01	1
k		

0.12% shift in δ_{35} for $a_3 = 20$ mrad

Determination of the first-order matrix is carried out in the ONLINE analysis.

Determination of higher-order transfer matrix elements (Advanced)

Verification of trajectory reconstruction

Matrix elements	Empirically derived
(x xa)	0.008
$(x x\delta)$	-0.065
$(x a\delta)$	-0.051
(x bb)	0.003
(x aaa)	0.00009
(a xa)	0.0027
$(a x\delta)$	-0.011
(a aa)	-0.0058
$(a a\delta)$	0.0065
$(a aa\delta)$	-0.0018

Improvement in A/Q resolution

Identification of charge-state change at F5: Method-I

 238 U 345 MeV/u + Be 4.9 mm Tuned for 168 Gd

*Timing resolution of PPAC is about 900 ps(σ)

These isotopes lose one electron at F5

Identification of charge-state change at F5: Method-II

- Trajectory reconstruction (COSY 1st-order matrix) + No slew correction $\rightarrow \sigma_{A/Q} \sim 0.06 0.08\%$
- Trajectory reconstruction (Experimental 1st-order matrix) + No slew correction $\rightarrow \sigma_{A/Q} \sim 0.05\%$
 - Sufficient for most cases –
- Trajectory reconstruction (Experimental 3rd-order matrix) + No slew correction $\rightarrow \sigma_{A/Q} \sim 0.04\%$
- Trajectory reconstruction (Experimental 3rd-order matrix) + slew correction $\rightarrow \sigma_{A/Q} \sim 0.035\%$

Trajectory reconstruction with the experimental 1st-order transfer matrix

Removal the events whose charge state changes at F5

+