Particle identification at BigRIPS and its optimization in the off-line analysis

N. Fukuda et al., Nucl. Instr. Meth. B 317 (2013) 323

- TOF-B $\rho-\Delta E$ method
- Trajectory reconstruction for $B \rho$ determination
- Background removal (Please see the above paper.)
- How to identify and remove the events whose charge state changes at F5

Naoki FUKUDA, BigRIPS team, RIKEN Nishina Center

Particle identification scheme at BigRIPS

 NiSHiNATOF-B $\rho-\Delta E$ method

$$
\begin{aligned}
& \frac{A}{Q}=\frac{B \rho}{\gamma \beta} \frac{c}{m_{u}} \\
& Z \leftarrow \Delta E \underset{\quad \text { Bethe-Bloch formula }}{f(Z, \beta)}
\end{aligned}
$$

TOF: Time of flight
$B \rho$: Magnetic rigidity
ΔE : Energy loss

$$
\begin{align*}
& \text { TOP }=\frac{L_{35}}{\beta_{35}}+\frac{L_{57}}{\beta_{57} c}, \\
& \left(\frac{A}{Q}\right)_{35}=\frac{B \rho_{35}}{\beta_{35} \gamma_{35}} \frac{c}{m_{u}}, \square \frac{\beta_{35} \gamma_{35}}{\beta_{57}}=\frac{B \rho_{35}}{B \rho_{57}} . \square \begin{array}{l}
\beta_{35} \\
\left(\frac{A}{Q}\right)_{57}=\frac{B \rho_{57}}{\beta_{57}} \frac{c}{\beta_{57}} .
\end{array} \text { If }\left(A / Q Q_{35}=(A / Q)_{57}\right. \\
& A / Q
\end{align*}
$$

$\Delta E:$ MUSIC, Si
Isomer γ-ray: Ge

Particle identification (PID) resolving power

TOF-B $\rho-\Delta E$ method with trajectory reconstruction
A/Q resolution: High enough to identify charge states of fragments

Identification of 45 New Neutron-Rich Isotopes
by In-Flight fission of a 238 U Beam at $345 \mathrm{MeV} /$ nucleon
T. Ohnishi et al., J. Phys. Soc. Jpn 79 (2010) 073201

Example:

 PID for fission fragments produced by in-flight fission of ${ }^{238} \mathrm{U}$ beam NiSHINA$$
\begin{aligned}
& { }^{238} \mathrm{U} 345 \mathrm{MeV} / \mathrm{u}+\mathrm{Pb} 0.95 \mathrm{~mm}(+\mathrm{Al} 0.3 \mathrm{~mm}) \\
& \mathrm{B} \rho=7.706 \mathrm{Tm}, \text { F1 deg. Al } 2.56 \mathrm{~mm} \text {, F5 deg. Al } 1.8 \mathrm{~mm}
\end{aligned}
$$

Identification of 45 New Neutron-Rich Isotopes
by In-Flight fission of a 238 U Beam at $345 \mathrm{MeV} /$ nucleon
T. Ohnishi et al., J. Phys. Soc. Jpn 79 (2010) 073201

Trajectory reconstruction for $B \rho$ determination

by using the position and angle measured at the focuses (such as F5x, F5a, F3x) and the experimentally determined transfer matrices as follows:

$$
\begin{aligned}
& \text { F5x }=(x \mid x) F 3 x+(x \mid a) F 3 a+(x \mid \delta) \delta \\
& F 5 a=(a \mid x) F 3 x+(a \mid a) F 3 a+(a \mid \delta) \delta
\end{aligned}
$$

Measured F5x, F5a, F3x
\rightarrow deduce δ, F3a
$B \rho=B \rho_{0}(1+\delta)$

For $Z=50$ isotopes produced by in-flight fission of a ${ }^{238} \mathrm{U}$ beam at $345 \mathrm{MeV} / \mathrm{u}$.

Trajectory reconstruction

F3-F5 case

$$
\begin{aligned}
& x_{5}=\underline{(x \mid x) x_{3}+\left(x \mid a() a_{3}\right)+\left(x \mid \delta \delta \delta_{35}\right) \quad \text { First-order matrix elements } . ~} \\
& +(x \mid x x) x_{3}^{2}+(x \mid x a) x_{3} a_{3}+(x \mid x \delta) x_{3} \delta_{35}+(x \mid a a) a_{3}^{2}+(x \mid a \delta) a_{3} \delta_{35} \\
& +(x \mid \delta \delta) \delta_{35}^{2}+(x \mid y y) y_{3}^{2}+(x \mid y b) y_{3} b_{3}+(x \mid b b) b_{3}^{2} \\
& a_{5}=(a \mid x) x_{3}+\left(a \mid a a_{3}+\left(a \mid \delta \delta_{35}\right) \quad\right. \text { First-order matrix elements } \\
& +(a \mid x x) x_{3}^{2}+(a \mid x a) x_{3} a_{3}+(a \mid x \delta) x_{3} \delta_{35}+(a \mid a a) a_{3}^{2}+(a \mid a \delta) a_{3} \delta_{35} \\
& +(a \mid \delta \delta) \delta_{35}^{2}+(a \mid y y) y_{3}^{2}+(a \mid y b) y_{3} b_{3}+(a \mid b b) b_{3}^{2} \\
& B \rho=B \rho_{0}(1+\delta) \\
& B \rho_{0} \text { : Central } B \rho \text { value Magnetic field measured by NMR probes } \\
& \text { The central trajectory radii deduced from the magnetic field-map data. }
\end{aligned}
$$

- First-order matrix elements: Derived directly from the measurement
- Higher-order matrix elements: Determined by the empirical method

Determination of first-order transfer matrix elements

Matrix elements	Experimentally derived	Calculated using COSY INFINITY
$(x \mid x)$	0.934 ± 0.094	0.927
$(a \mid x)$	-0.265 ± 0.138	-0.020
$(x \mid a)$	0.191 ± 0.039	-0.005
$(a \mid a)$	1.064 ± 0.009	1.079
$(x \mid \delta)$	31.84 ± 0.090	31.67
$(a \mid \delta)$	0.310 ± 0.209	0.015
Determinant	1.044 ± 0.01	1

0.12% shift in δ_{35} for $\mathrm{a}_{3}=20 \mathrm{mrad}$

Determination of the first-order matrix is carried out in the ONLINE analysis.

Determination of higher-order transfer matrix elements

 (Advanced)

Verification
of trajectory reconstruction

Improvement in A / Q resolution

Sn isotopes

${ }^{238} \mathrm{U} 345 \mathrm{MeV} / \mathrm{u}+\mathrm{Pb} 0.95 \mathrm{~mm}$ (+Al 0.3 mm$)$ $B \rho=7.706 \mathrm{Tm}, \mathrm{F} 1 \mathrm{deg}$. Al $2.56 \mathrm{~mm}, \mathrm{~F} 5 \mathrm{deg}$. Al 1.8 mm

COSY

$$
\sigma=0.060 \%
$$

Experimental: $1^{\text {st }}$ order
$\sigma=0.049 \%$

Experimental: $3^{\text {rd }}$ order
$\sigma=0.038 \% \quad$ Excellent tail separation

Identification of charge-state change at F5: Method-I

\qquad
${ }^{238} \mathrm{U} 345 \mathrm{MeV} / \mathrm{u}+\mathrm{Be} 4.9 \mathrm{~mm}$
Tuned for ${ }^{168} \mathrm{Gd}$

(b)

*Timing resolution of PPAC is about $900 \mathrm{ps}(\sigma)$

These isotopes lose one electron at F5

Identification of charge－state change at F5：Method－II

 NiSkHiNaCETHE

$$
\Delta E_{\mathrm{F} 5 \mathrm{deg}}: \text { F5 degrader での energy loss } \quad \text { If } \mathrm{A} \text { and } \mathrm{Q} \text { do not change }
$$

 Bethe－Bloch formula d：degrade thickness

Summary

- Trajectory reconstruction (COSY 1st-order matrix) + No slew correction $\rightarrow \sigma_{A / Q} \sim 0.06-0.08 \%$
- Trajectory reconstruction (Experimental 1st-order matrix) + No slew correction $\rightarrow \sigma_{A / Q} \sim 0.05 \%$
__ Sufficient for most cases \qquad
- Trajectory reconstruction (Experimental 3rd-order matrix) + No slew correction $\rightarrow \sigma_{A / Q} \sim 0.04 \%$

- Trajectory reconstruction (Experimental 3rd-order matrix) + slew correction $\rightarrow \sigma_{A / Q} \sim 0.035 \%$

Trajectory reconstruction with the experimental 1st-order transfer matrix $+$

Removal the events whose charge state changes at F5

