BigRIPS Workshop --- Ion Optics of BigRIPS Separator---

2014 / 9 / 11 SUZUKI Hiroshi

Outline of My Talk

- Introduction
 - Standard ion optics of the BigRIPS
- Procedure of focus tune
 - Focusing terms (x|a), (y|b) tune by quadrupoles
 - Higher order terms tune by sextupoles
 - Setting for the matrix elements
- New optics for the BigRIPS separator
 - D double mode
- Optics for the SAMURAI beam line
- Summary

BigRIPS Separator

Procedure of Focus Tune

Procedure for Making BigRIPS Settings (Ion Optics Only)

- 1. Set the $B\rho$ value of each section
- 2. Focus tune by adjusting the quadrupoles
- 3. Higher order tune by the sextupoles
- 4. Optics settings for deducing the matrix elements in the 2nd stage

2. Focus Tune by Quadrupoles

- After setting the Bp value, the focusing is not sufficient.
- Focusing is essential especially for the separation of the nuclei at the achromatic focal planes.
- First, we tune focusing terms (x|a), (y|b) by the quadrupoles.
- Procedure of focusing at each focal plane
 - Close the F1 momentum slit (+/-0.1%)
 - For focusing, make the emittance-ellipse vertically.

Continue to the next page

Focus Tune by Quadrupoles

- Deduce the displacement of the focus position from the slope of the emittance ellipse.
- The relation between the focal-position displacement and the magnetic field adjustment are calculated already.
- Using these relations, the displacement is corrected.
- In the focus tuning, STQs in the achromatic section is used. ex) F3-F5: STQ07
- The focusing in x and y directions are independently.
- In most of cases, the adjustment is in less than a few %.

3. Sextupole tune

- Sextupole: tune for the higher order terms. (x|aa), $(x|a\delta)$, (x|aaa), etc...
- 2nd stage: For F3-F5 (F7-F5 is mirror symmetry at F5)
 - F3-F4: Minimize $\{(x|ad)*0.04*0.03\}^2 + \{(y|ab)*0.04*0.04\}^2$
 - F3-F5: Min. $\{(x|ad)*0.04*0.03\}^2 + \{(x|aa)*0.04^2\}^2 + \{(x|bb)*0.05^2\}^2 + \{(y|ab)*0.04*0.05\}^2$
- 1st stage: 2 sextupoles in each section \rightarrow 2 conditions each.
 - STQ2s, 3s: Cancel the chromatic aberration.
 - STQ1s, 4s: Cancel the angular aberration caused by 2s and 3s.

- 4 settings (next page)
- ⁹⁰Sr setting (primary beam: ²³⁸U)
 0.1-mmt Be, F1: 7 mm, F5: 5 mm
 Bρ01: 7.25, Bρ12: 6.30, Bρ35: 6.28, Bρ57: 5.43 Tm
 F1: +/-64.2, F2: +/-20, F5: +/-120, F7: +/-50 mm
- Image at F2 of ⁹⁰Sr
- Angular distribution
 - 11 mrad @ F0 (1 σ)
 - +/-30 mrad @ F0 (total width)
- Momentum distribtion
 - +/-3%

1st Stage: Sextupole Optics 1 & 2

- SH optics 1: Usual optics
 - FO-F1
 - $(\mathbf{x} | \mathbf{a} \delta) = 0$
 - {(x|aa)*40²}² = {(x|bb)*50²}²
 - F0-F2
 - (x | aδ) = 0
 - Minimize $(x|a\delta)_{02}^{2} + (x|a\delta)_{03}^{2}$
- SH optics 2: All Sextupoles OFF

F2 images, ⁹⁰Sr, F1:+/-64.2 mm

1st Stage: Sextupole Optics 3 & 4

- SH optics 3: Original optics
 - FO-F1
 - (x|aδ) = 0
 - (x|aa) = 0
 - F0-F2
 - (x|aδ) = 0
 - (x|aa) = 0
- SH optics 4:
 - FO-F1
 - (x|a\delta) = 0
 - Minimize $\{(x | aa)^* 40^2\}^2 + \{(x | aaa)^* 40^3\}^2$
 - F0-F2
 - (x | aδ) = 0
 - Minimize {(x|aa)*40²}² + {(x|aaa)*40³}²
 40 mrad: Angular acceptance

F2 images, ⁹⁰Sr, F1:+/-64.2 mm

Width at F2 (1 σ)

	SH optics 1 Usual	SH optics 2 All SH OFF	SH optics 3 Original	SH optics 4 New
F1 = +/-2 mm	2.28 mm	2.34 mm	2.26 mm	2.19 mm
F1 = +/-64.2	3.71 mm	4.41 mm	3.56 mm	3.48 mm

- The width of the image are narrowest in the case of SH optics 4.
- Room for the improvement of the separation.
- Purity
 - Set the F2 slit on the analysis, and deduced the purity for these 4 settings.
 - The position of the slits were decided as the figure.

Purity	12.8%	8.6%	13.5%	13.6%	
(F1 slit: +/-64.2 mm)					

• The purities are almost the same in the case of ⁹⁰Sr beam.

4. Optics Setting for the Matrices

• Derivation of *A*/*Q*

• A/Q is deduced from $B\rho_{35}$, $B\rho_{57}$, and TOF_{37} A/Q = $B\rho_{35}$ / $c\beta_{35}\gamma_{35}$

 $A/Q = B\rho_{57} / c\beta_{57}\gamma_{57}$ $TOF_{37} = L_{35}/\beta_{35}c + L_{57}/\beta_{57}c$

- $B\rho_{35} = B\rho_{35_0} * (1+\delta_{35})$ $B\rho_{57} = B\rho_{57_0} * (1+\delta_{57})$
- δ_{35} and δ_{57} are deduced by the track reconstruction $F5x = (x|x)_{35}*F3x + (x|a)_{35}*F3a + (x|d)_{35}*\delta_{35}$ $F5a = (a|x)_{35}*F3x + (a|a)_{35}*F3a + (a|d)_{35}*\delta_{35}$

4. Optics Setting for the Matrices

• For deducing the matrix elements of (x|x) and (a|x), F3 parallel mode was developed.

Derivation of Matrix Elements

- For $(\mathbf{x}|\delta)_{35}$ and $(\mathbf{a}|\delta)_{35}$
 - Choose the events at the center at F3 and F7.
 - From the relation between F5x and TOF₃₇, (x $|\delta$) is deduced.
 - TOF is calculated from δ .
 - Here, we assume that the $(|\delta)$ term is 0.

New Optics for BigRIPS (D double mode)

High Resolution D-double Mode

Purpose: to double the A/Q resolution in the 2nd stage (standard mode: ~3300).

 \rightarrow Make the D/M value double.

(D: Dispersion)(M: Magnification)

- So, we developed "D-double" mode.
 - The Dispersion is doubled, while the Magnification is not changed.
- Matrix elements @ F3-F5 (@ F7-F5: mirror symmetry)
 - (x|a) = (y|b) = 0 (focusing terms).
 - $(a | \delta) = 0$ (angular dispersion).
 - (x|x) term (M) keeps the original value (0.92).
 - $(x|\delta)$ term (D) is set to be doubled $(31.7 \rightarrow 63.4 \text{ mm/\%})$.
 - (a|x), (b|y) are less than 0.1 (In the standard mode, these values are around 0.1 or more.)

D double mode

@F3

x: +/-5 mm a: +/-18.4 mrad (+/-40 mrad @ F0) δ: +/-3% (+3%, 0%, -3%)

Standard mode

Matrix₃₅ of D-double Mode

D-double mode

 Design 	 Experiment 	
(x x) = 0.9206	1.14 +/- 0.04	
(a a) = 1.0863	1.10 +/- 0.01	
(x d) = <mark>63.374</mark>	60.2 +/- 0.1	D/M = 52.8
Standard mode		
 Design 	 Experiment 	x ~1.5
(x x) = 0.9206	0.886 +/- 0.0115	
(a a) = 1.0863	1.13 +/- 0.01	
(x d) = 31.687	30.8 +/- 0.1	D/M = 34.8

A/Q Separation (Sn Isotopes)

Angular Acceptance vs Momentum (Simulation)

Momentum (%)

SAMURAI Beam Line Optics

SAMURAI Beam Line

- Size of the duct
 - Beam duct : ϕ 240 mm
 - Beam blocker between F7 and F8 : +/-78 mm (y)
 - Gap of D7 dipole : +/-61 mm (y)
 - F13 duct : φ132 mm
- Problems
 - Only one STQ between F12 and F13.
 - The gap of the D7 dipole is +/-61 mm.

Ion Optics in SAMURAI Beam Line

- Focus the beam inside D7 dipole magnet instead of F8 or F12.
- At F8 and F12, the beam is set to parallel.

 \rightarrow This makes it easier to diagnose the beam optics using the PPAC detectors.

Summary

- Procedure of focus tune
 - Set the B ρ value of each section.
 - Focus tune with quadrupoles.
 - Focus tune with sextupoles.
 - F3 parallel mode (for deducing the matrix elements)
- D double mode (BigRIPS)
 - To obtain the better A/Q resolution, D double mode was developed.
 - The Dispersion is doubled, while the Magnification is not changed.
 - − A/Q resolution: 0.035% \rightarrow 0.028%.
- SAMURAI beam line optics
 - The beam is focused in D7 dipole magnet.
 - The beam is parallel at F8 and F12 to diagnose the beam optics