Acceptance study of ZeroDegree Spectrometer (ZDS)

N. Kobayashi

University of Tokyo

$\boldsymbol{P}_{/ /}$distribution

\rightarrow Orbital angular momentum ℓ of the valence neutron \leftarrow Acceptance of core fragments at ZDS? \leftarrow Calibration runs of our exp.

RI Beam Factory (RIBF) @ RIKEN

Superconducting Ring cyclotron(SRC)

RARF

Former

- facility

RI Beam Factory (RIBF)
19,20,22C, ${ }^{31} \mathrm{Ne}$ in 2008 ${ }^{37} \mathbf{M g}$ in 2010

BigRIPS

Experimental setup/

Angular acceptance of ZDS

BigRIPS PID

ZDS PID
(${ }^{35} \mathrm{Mg}$ is selected at BigRIPS)

Used run : ${ }^{35} \mathrm{Mg}+$ empty target -> ${ }^{35} \mathrm{Mg}$ The beam angle was widened at F8.
(STQ15,16 was tuned (Sumikama-san's optics).)

Angular acceptance of ZDS (vertical)

Fitting func. $f(X)$: convoluted rectangular func.

$$
\begin{aligned}
& f(x)=\mathrm{C} \int_{-\infty}^{\infty} \operatorname{rect}(t) g(x-t) d t \\
& \operatorname{rect}(x)= \begin{cases}1 & \text { if }|\mathrm{x}| \leq \Gamma_{\mathrm{FWHM}} / 2 \\
0 & \text { if }|\mathrm{x}|>\Gamma_{\mathrm{FWHM}} / 2\end{cases} \\
& g(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{x^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

Vertical anglar acceptance
+/- 30 mrad
(design value: +/- 30 mrad)

Angular acceptance of ZDS (horizontal)

Fitting func. $f(x)$: convoluted rectangular func.

$$
\begin{aligned}
& f(x)=\mathrm{C} \int_{-\infty}^{\infty} \operatorname{rect}(t) g(x-t) d t \\
& \operatorname{rect}(x)= \begin{cases}1 & \text { if }|\mathrm{x}-\sigma| \leq \Gamma_{\mathrm{FWHM}} / 2 \\
0 & \text { if }|\mathrm{x}-6|>\Gamma_{\mathrm{FWHM}} / 2\end{cases} \\
& g(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{x^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

Horizontal anglar acceptance -40 ~ +52 mrad (design value: +/- 45 mrad)

Momentum acceptance of ZDS

To estimate the mom. acc., ${ }^{35} \mathrm{Mg}+$ empty $->{ }^{35} \mathrm{Mg}$ setting can not be used. Because almost all ${ }^{35} \mathrm{Mg}$ particles are accepted at ZDS.

In ${ }^{35} \mathrm{Mg}+$ empty -> ${ }^{34} \mathrm{Mg}$ setting, ${ }^{35} \mathrm{Mg}$ dist. was checked to get upper lim. of acc. (${ }^{35} \mathrm{Mg}$ beam hits the ZDS beam line.)

Similarly, in ${ }^{35} \mathrm{Mg}+\mathrm{C}->{ }^{35} \mathrm{Mg}$ setting, ${ }^{34} \mathrm{Mg}$ dist. was checked to get lower lim. of acc..

Momentum acceptance of ZDS

BigRIPS PID

(${ }^{35} \mathrm{Mg}$ is selected at BigRIPS)

Used run:
${ }^{35} \mathrm{Mg}+$ empty $->{ }^{34} \mathrm{Mg}$ setting (background run)
To estimate the momentum acceptance, ${ }^{35} \mathrm{Mg}$ dist. was checked at ZDS.

ZDS PID

Momentum acceptance of ZDS

Fitting func. $f(x)$: convoluted rectangular func.

$$
\begin{aligned}
& f(x)=\mathrm{C} \int_{-\infty}^{\infty} \operatorname{rect}(t) g(x-t) d t \\
& \operatorname{rect}(x)= \begin{cases}1 & \text { if }|\mathrm{x}| \leq \Gamma_{\text {Fwнm }} / 2 \\
0 & \text { if }|\mathrm{x}|>\mathrm{F}_{\mathrm{FwHM}} / 2\end{cases} \\
& g(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{x^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

Momentum acceptance
< +4.8 \%

Momentum acceptance of ZDS

BigRIPS PID

Used run
${ }^{35} \mathrm{Mg}+\mathrm{C}->{ }^{35} \mathrm{Mg}$ setting (resolution survey run)
To estimate the momentum acceptance, ${ }^{34} \mathrm{Mg}$ dist. was checked at ZDS.

ZDS PID
(${ }^{35} \mathrm{Mg}$ is selected at BigRIPS)

Momentum acceptance of ZDS

Fitting func. $f(X)$: convoluted rectangular func.

$$
\begin{aligned}
& f(x)=\mathrm{C} \int_{-\infty}^{\infty} \operatorname{rect}(t) g(x-t) d t \\
& \operatorname{rect}(x)=\left\{\begin{array}{lll}
1 & \text { if } x \geq \Gamma_{\mathrm{FWHM}} / 2 \\
0 & \text { if } & x<\Gamma_{\mathrm{FWHM}} / 2
\end{array}\right. \\
& g(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{x^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

Momentum acceptance
--> -4.3 \%
-4.3 ~ +4.8 \%
(design value: +/- 3\%)

Summary

Experimentally, acceptances were obtained to get $p_{/ /}$dist. \& absolute cross sections.
x-angle: -40(?) to +52 mrad
y-angle: -30 to +30 mrad
momentum: -4.3 to $+4.8 \%$

Outlook

 Error?Can we obtain the acceptance theoretically?
(from the ion optics and trajectories?) Who will do?

Backup

