Acceptance study of ZeroDegree Spectrometer (ZDS)

N. Kobayashi
University of Tokyo

- \rightarrow Orbital angular momentum ℓ of the valence neutron
- ← Acceptance of core fragments at ZDS? ← Calibration runs of our exp.

RI Beam Factory (RIBF) @ RIKEN

Experimental setup /

Angular acceptance of ZDS

Used run: 35Mg + empty target -> 35Mg The beam angle was widened at F8. (STQ15,16 was tuned (Sumikama-san's optics).)

Angular acceptance of ZDS (vertical)

Fitting func. f(x): convoluted rectangular func.

$$f(x) = C \int_{-\infty}^{\infty} \text{rect}(t) g(x - t) dt$$

$$\text{rect}(x) = \begin{cases} 1 & \text{if } |x| \le \Gamma_{\text{FWHM}}/2 \\ 0 & \text{if } |x| > \Gamma_{\text{FWHM}}/2 \end{cases}$$

$$g(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$

Vertical anglar acceptance +/- 30 mrad (design value: +/- 30 mrad)

Angular acceptance of ZDS (horizontal)

Fitting func. f(x): convoluted rectangular func.

$$f(x) = C \int_{-\infty}^{\infty} \text{rect}(t) g(x-t) dt$$

$$\text{rect}(x) = \begin{cases} 1 & \text{if } |x-6| \le \Gamma_{\text{FWHM}}/2 \\ 0 & \text{if } |x-6| > \Gamma_{\text{FWHM}}/2 \end{cases}$$

$$g(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$

 $rect(x) = \begin{cases} 1 & \text{if } |x-6| \le \Gamma_{FWHM}/2 \\ 0 & \text{if } |x-6| > \Gamma_{FWHM}/2 \end{cases}$ Horizontal anglar acceptance -40 ~ +52 mrad (design value: +/- 45 mrad)

To estimate the mom. acc., ³⁵Mg + empty -> ³⁵Mg setting can not be used. Because almost all ³⁵Mg particles are accepted at ZDS.

In ³⁵Mg + empty -> ³⁴Mg setting, ³⁵Mg dist. was checked to get upper lim. of acc. (³⁵Mg beam hits the ZDS beam line.)

Similarly, in ³⁵Mg + C -> ³⁵Mg setting, ³⁴Mg dist. was checked to get lower lim. of acc..

Used run: ³⁵Mg + empty -> ³⁴Mg setting (background run)

To estimate the momentum acceptance, ³⁵Mg dist. was checked at ZDS. ³⁵Mg

Fitting func. f(x): convoluted rectangular func.

$$f(x) = C \int_{-\infty}^{\infty} \text{rect}(t) g(x - t) dt$$

$$\text{rect}(x) = \begin{cases} 1 & \text{if } |x| \le \Gamma_{\text{FWHM}}/2 \\ 0 & \text{if } |x| > \Gamma_{\text{FWHM}}/2 \end{cases}$$

$$g(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$

Momentum acceptance < +4.8 %

Fitting func. f(x): convoluted rectangular func.

$$f(x) = C \int_{-\infty}^{\infty} \text{rect}(t) g(x-t) dt$$

$$\text{rect}(x) = \begin{cases} 1 & \text{if } x \ge \Gamma_{\text{FWHM}}/2 \\ 0 & \text{if } x < \Gamma_{\text{FWHM}}/2 \end{cases}$$

$$g(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$

Momentum acceptance --> -4.3 % -4.3 ~ +4.8 % (design value: +/- 3%)

Summary

Experimentally, acceptances were obtained to get p_{II} dist. & absolute cross sections.

x-angle: -40(?) to +52 mrad

y-angle: -30 to +30 mrad

momentum: -4.3 to +4.8 %

Outlook

Error?

Can we obtain the acceptance theoretically? (from the ion optics and trajectories?)

Who will do?

Backup