

Two-Neutron Momentum Correlation in Borromean Nuclei

Y. Kubota (CNS, Univ. of Tokyo/ RIKEN Nishina Center)

A. Corsi (CEA Saclay)

M. Sasano (RIKEN Nishina Center)

Collaboration

<u>A. Corsi</u>, A. Gillibert, V. Lapoux, A. Obertelli, E. C. Pollacco, C. Santamaria, and engineers CEA Saclay

H. Baba, D. Beaumel, P. Doornenbal, T. Isobe, T. Motobayashi, H. Otsu, M. Sasano, H. Sato, Y. Shimizu, S. Takeuchi, T. Uesaka, K. Yoneda, J. Zenihiro *RIKEN Nishina Center*

> M. Dozono, S. Kawase, M. Kobayashi, M. Matsushita, S. Ota, M. Takaki, T. L. Tang, H. Tokieda, K. Yako *CNS, University of Tokyo*

> > N. Kobayashi University of Tokyo

K. Kisamori, <u>Y. Kubota</u>, C. S. Lee

CNS and RIKEN Nishina Center

K. Kobayashi *Rikkyo University*

T. Kobayashi Tohoku University

Y. Kondo, T. Nakamura, Y. Togano Tokyo Institute of Technology

> S. Sakaguchi, J. Yasuda Kyushu University

Theoretical support from Y. Kikuchi (RIKEN) and K. Ogata (RCNP)

How can we SEE clustering?

(c)

 $^{12}C(+)$

We will demonstrate how to do it.

Y. Kanada-En'yo et al., Phys. Rev. C 84, 014313

Yu. Ts. Oganessian et al., Phys. Rev. Lett. 82, 4996

Steps to SEE clustering

- 1. Break
 - Nuclear reaction → break the nucleus into clustering ingredients
- 2. Measure
 - Momenta of all the ingredients after the reaction
- 3. Connect
 - Measured (asymptotic) momenta → initial momenta in nucleus
- 4. Represent
 - Appropriate coordinate

These four steps are essential. The "connection" is the key.

"Connection"

Initial momentum ≠ asymptotic momentum

Because of final state interaction (FSI)

Effect of FSIs

Spectra can be largely distorted by FSI

Steps to SEE clustering

- 1. Break
 - Nuclear reaction → break the nucleus into clustering ingredients
- 2. Measure
 - Momenta of all the ingredients after the reaction
- 3. Connect → suffers from FSI
 - Measured (asymptotic) momenta → initial momenta in nucleus
- 4. Represent
 - Appropriate coordinate

A solution with the quasi-free knockout reaction on

<u>Borromean nuclei</u>

(p,pn) on Borromean nuclei

Steps to SEE clustering

- 1. Break
 - Nuclear reaction \rightarrow break the nucleus into clustering ingredients
 - \rightarrow All the cluster ingredients go apart through the reaction (and decay)
- 2. Measure
 - Momenta of all the ingredients after the reaction
 - → Complete measurement
- 3. Connect
 - Measured (asymptotic) momenta \rightarrow initial momenta in nucleus
 - \rightarrow FSI is minimized
 - One FSI remaining \rightarrow can be handled
- 4. Represent
 - Appropriate coordinate

2

di-neutron and alpha-cluster correlations in

exotic nuclei

0.9

RIBF x SAMURAI x MINOS

- 1. Simple mechanism of the quasi-free (p,pn) reaction at intermediate energies
 - ✓ Determine the single particle nature most reliably

Kinematically complete measurement!

Jul. 10, 2014

exotic nuclei

Kinematically complete measurement!

Jul. 10, 2014

di-neutron and alpha-cluster correlations in

exotic nuclei

Kinematically complete measurement!

di-neutron and alpha-cluster correlations in

Jul. 10. 2014

exotic nuclei

How can the dineutron be observed?

Work done by Y. Kikuchi and K. Ogata

The remaining one FSI effect is large, but ...

How can the dineutron be observed?

Work done by Y. Kikuchi and K. Ogata

Dineutron component can be extracted.

• Dineutron ←→ Cigar-like

• Coherence is preserved i-neutron and alpha-cluster correlations in Jul. 10, 2014 exotic nuclei

Coherence of the wave function

Summary

- One can see the clustering through
 - 1. Break
 - 2. Measure

3. Connect

- 4. Represent
- The first case will be demonstrated
 - With quasi-free knockout reaction
 - On Borromean nuclei
 - In combination with MINOS and SAMURAI @RIBF