cluster states and their rotation in light nuclei

Y. Kanada-En'yo (Kyoto Univ.)

Collaborators:

Y. Hidaka(RIKEN), T. Ichikawa(YITP),

M. Kimura(Hokkaido), F. Kobayashi(Kyoto),

T. Suhara (Matsue) , Y. Taniguchi (NIMS), Y. Yoshida (Kyoto)

1.Introduction

Cluster & Mean field

Cluster structures

Cluster structures in stable and unstable nuclei

Typical cluster structures known in stable nuclei

Cluster structures in n-rich nuclei

Roles of excess neutrons in cluster structures of n-rich nuclei

⁶He+He

Soic et al., Freer et al., Saito et al., Curtis et al., Milin et al., Bohlen et al., Seya, Von Oerzten, Descouvemont et al., Itagaki et al., Dote et al., K-E et al. Arai et al., M. Ito et al.

Atomic:

Scholz et al., Rogachev et al., Goldberg et al., Ashwood et al., Yildiz et al., Descouvemont, Kimura,

Molecular Orbital: bonded clusters

Cluster resonance

Strong coupling

Weak

coupling

Be isotopes

Normal states

shell model-like

Ne, F, O isotopes

α -cluster states in n-rich nuclei

Cluster resonances

New states discovered and suggested at $Ex = several \sim 20 \text{ MeV}$ in α -decay, α -transfer, α -scattering

- 6,8 He+ α in Be*
- $\frac{^{10}\text{Be}}{^{10}\text{Be}}$ + α in ^{14}C *

 ^{14}C + α in ^{18}O *

 ^{18}O + α in $^{22}Ne^*$

Exp: Soic et al., Freer et al., Saito et al., Curtis et al., Milin et al., Bohlen et al., Theor: Seya, von Oerzten, Descouvemont et al.,Itagaki et al., K-E et al. Arai et al., M. Ito et al.

Exp Soic 04, von Oertzen '04, Price 07, Haigh 08, Theor: Suhara '10

Exp Scholz et al., Rogachev et al., Goldberg et al., Ashwood et al., Yildiz et al., al., Theor: Descouvemont, Kimura,

Exp Scholz '72, Rogachev '01, Goldberg '04, Ashwood '06, Yildiz et al., Theor: Descouvemont '88, Kimura '07

-> information of nucleus-nucleus potential and valence neutron effects there.

Two kinds of cluster structure

strong coupling cluster V.S. weak coupling cluster

- Cluster core at surface
- Clusters are overlapping
- Usually bound state
- Indirect evidence deformation, trancitions, charge radii, s.p. config.

- Excitation of relative motion
- No overlap. far from each other
- Excited states near or resonances above threshold
- more direct evidence alpha-decay, alpha scattering

ex) when knock-out the deeply bound cluster, the residual may not be the pure ground state but contain g.s. and excited configurations.

Cluster & Mean field

3. Some topics of cluster phenomena

3-1. MO bond in n-rich Be <
& vanishing of magic number

3-2. Cluster resonances

3-3. Linear chain in n-rich C

Cluster structures in neutron-rich Be

Energy levels of ¹²Be

VAP calculation with AMD method positive parity states with normal spins

Y.Kanada-En'yo et al., PRC 68, 014319 (2003)

¹²Be

Breaking of N=8 magicity Formation of 2a+molecular orbitals

Vanishing of N=8 magic number in neutron-rich Be

Y.K-E.PRC (03),(12) , Ito PRL(08) Dufour NPA(10)

Fortune PRC(06), Blanchon PRC(10) Energy ¹⁰Be ¹²Be, ^{11,13}Be deformation in ¹²Be(gs) Inelastic scat. life time: Iwasaki PLB481(00), 0^{+}_{2} Normal **Oh** Imai PLB673(09) Inversion 0_{2}^{+} π intruder config. in ¹²Be(gs) MO bond O1n-knockout reac.: Navin PRL85(00), Pain PRL96(06) \mathbf{O} Intruder 2hm 0_{1}^{+} π ¹²Be(0₂⁺) with p-shell config. Shimoura PLB654 (07) Normal state B(GT) with charge ex.: Meharchand PRL108 (12) n-rich ¹²Be g.s. 0+ ¹³Be g.s. 1/2abnormal parity of ¹³Be(gs)

Kondo et al. PLB690 (10)

3-1. MO bond in n-rich Be & vanishing of magic number

3-2. Cluster resonances

3-3. Linear chain in n-rich C

α -cluster states in n-rich nuclei

Cluster resonances

New states discovered and suggested at $Ex = several \sim 20 \text{ MeV}$ in α -decay, α -transfer, α -scattering

- 6,8 He+ α in Be*
- $\frac{^{10}\text{Be}}{^{10}\text{Be}}$ + α in ^{14}C *

 ^{14}C + α in ^{18}O *

 ^{18}O + α in $^{22}Ne^*$

Exp: Soic et al., Freer et al., Saito et al., Curtis et al., Milin et al., Bohlen et al., Theor: Seya, von Oerzten, Descouvemont et al.,Itagaki et al., K-E et al. Arai et al., M. Ito et al.

Exp Soic 04, von Oertzen '04, Price 07, Haigh 08, Theor: Suhara '10

Exp Scholz et al., Rogachev et al., Goldberg et al., Ashwood et al., Yildiz et al., al., Theor: Descouvemont, Kimura,

Exp Scholz '72, Rogachev '01, Goldberg '04, Ashwood '06, Yildiz et al., Theor: Descouvemont '88, Kimura '07

-> information of nucleus-nucleus potential and valence neutron effects there.

Cluster resonances

Question: Is triton cluster general?

⁶He+³H cluster resonances in ⁹Li

Summary

Rich cluster phenomena in n-rich nuclei as function of proton and neutron numbers and excitation energy

- Cluster formation/breaking in low-lying states
- Cluster excitation and resonances
- ✓ valence neutrons: MO Bond, new types of clusters
- ✓ Many clusters : cluster gas, chain

strong coupling cluster V.S. weak coupling cluster

Law of cluster states in n-rich nuclei: Extended Ikeda diagram?

Ikeda diagram Ikeda et al.PTP464-S (1968)

Extended Ikeda diagram von Oertzen et al (2006)

Taken from Phys. Report 432 (2006)