Investigation of dineutron correlation via ⁶He(p,pn) reaction Yuma Kikuchi

Dineutron correlation in two-neutron halo nuclei

- Two-neutron halo nuclei have been studied based on core+n+n three-body model.
 - □ The results of three-body models show that:
 - A correlation between halo neutrons has an important role in their binding mechanisms.
 - □ This correlation is characterized as a spatially-correlated n-n pair, the so-called "dineutron."

Quasi-free neutron knockout reactions

- The quasi-free neutron knockout reactions might be useful to investigate the ground-state structure such as a dineutron.
 - □ The knocked-out neutron is almost free from FSIs.

Quasi-free neutron knockout reactions

- □ The quasi-free neutron knockout reactions might be useful to investigate the ground-state structure such as a dineutron.
 - □ The knocked-out neutron is almost free from FSIs.
 - □ However, in the ⁶He(p,pn) reaction, the residual nucleus ⁵He is unbound due to the Borromean nature of ⁶He.
 - □ How the process via ⁵He resonances impact on the observables?

Quasi-free knockout reactions using sudden approx.

As first step, we use the simple model in calculating the knockout reaction.
 We here use the sudden approximation in the present calculation.

- □ The (p,pn) part is treated by the simple momentum-transfer operator.
- The scattering wave of the knocked-out neutron is described by a plane wave.
- To estimate the effect of the process via ⁵He resonance on the reaction, the exact scattering states of α+n system for the residual part.
- The T-matrix for the knockout reaction is given as

Momentum distributions in the ground state of ⁶He

- □ Momentum distribution and angular correlation in the ground state of ⁶He
 - = Fourier transform of the ground-state wave function
 - □ In both distributions, the peaks are seen at the region of large angle.
 - **□** These indicate the dineutron in the ground state.

Angular correlations in the knockout reaction

- **U** We calculate the angular correlation in the knockout reaction.
 - □ The calculated distribution shows the two-peaked structure.
 - However, in the result for knockout, the 2nd peak, corresponding to the dineutron, is reduced compared to the ground-state distribution.
 - □ The process via ⁵He changes the angular correlation, especially for the dineutron part.

Angular correlations in the knockout reaction

- What happens by taking into account the process via ⁵He resonance?
 Inclusion of the process via ⁵He resonance, the momentum distributions is concentrated on the momentum region corresponding to ⁵He(3/2⁻).
 - □ The process via ⁵He drastically changes the angular correlation.

To find the evidence of dineutron

- **Dineutron:** Asymmetric shape in the angular correlation
 - The origin of the asymmetry is an interference between different parity states.

$$\begin{split} \left| \Phi(^{6}\text{He}) \right|^{2} &= \left| \alpha \phi(s^{2}) + \beta \phi(p^{2}) + \cdots \right|^{2} \\ &= \alpha^{2} \left| \phi(s^{2}) \right|^{2} + \beta^{2} \left| \phi(p^{2}) \right|^{2} + \cdots \checkmark \text{Symmetric part in ang. corr.} \\ &+ 2\alpha \beta \phi(s^{2}) \phi(p^{2}) + \cdots \checkmark \text{Asymmetric} \end{split}$$

Relative phase is crucial to determine the asymmetry

To find the evidence of dineutron

D Dineutron: Asymmetric shape in the angular correlation

- □ The relative phase between different parity states is crucial to determine the dineutron in the ground state.
 - At k_{α-n}~0.5fm⁻¹, the relative phase between s- and p-waves changes because the s-wave has a node.
 - \Box Asymmetries in the angular correlations of the ground state are opposite to each other in lower and higher region of $k_{\alpha-n}$.

To find the evidence of dineutron

In the quasi-free knockout reaction, it is necessary to consider:
 How to minimize the effect of the process via ⁵He resonance
 We minimize this effect by selecting the off-resonance region in the relative momentum between α and the decayed neutron, k_{α-n}.
 How to identify the relative phase between different parity states
 We identify the relative phase from the asymmetries in the angular correlations at the lower and higher parts of k_{α-n}.

Angular correlations in off-resonance region

- □ We calculate the angular correlations for lower and higher parts of offresonance region.
 - We find the similar trend to that in the ground state even if the process via ⁵He resonance dominates the knockout reaction.
 - □ The lower momentum region, we can clearly find an enhancement of dineutron in the angular correlation.

For Experimental setup

- \Box To select the off-resonance region and to investigate the asymmetries in angular correlations in the knockout reaction, a good resolution for $k_{\alpha-n}$ is required.
 - For the most serious case, maybe ¹¹Li, the s-wave virtual and p-wave resonant states are located in separation of 200 keV (in theoretical prediction).
 - \Box The resolution of ~ 50 keV, which is relevant to $k_{\alpha-n}$ ~ 0.05 fm⁻¹, is required in such as case.
- It is also useful to measure momentum distributions for the relative motion between the core-n subsystem and neutron.
 - It tells us the direct information on the initial momentum in the nucleus.
 - □ Is it possible experimentally?