Measurements of the hyperfine structure constant for laser-cooled ¹¹Be⁺ ions

Department of Phys.&Math., AGU SLOWRI team, Nishina Center, RIKEN Aiko TAKAMINE Ş

Hyperfine Structure Constant of the Neutron Halo Nucleus ¹¹Be⁺

A. Takamine,^{1,*} M. Wada,^{1,†} K. Okada,² T. Sonoda,¹ P. Schury,¹ T. Nakamura,³ Y. Kanai,³ T. Kubo,¹ I. Katayama,⁴ S. Ohtani,⁵ H. Wollnik,⁶ and H. A. Schuessler⁷
¹Nishina Center for Accelerator Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan ²Department of Physics, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo 102-8554, Japan ³Atomic Physics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan ³Atomic Physics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan ⁴Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan ⁵Institute for Laser Science (ILS), The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan ⁶Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003, USA ⁷Department of Physics, Texas A&M University, College Station, Texas 77843, USA (Received 18 October 2012; revised manuscript received 15 January 2014; published 24 April 2014)

The hyperfine splittings of ground state ¹¹Be⁺ have been measured precisely by laser-microwave double resonance spectroscopy for trapped and laser cooled beryllium ions. The ions were produced at relativistic energies and subsequently slowed down and trapped at mK temperatures. The magnetic hyperfine structure constant of ¹¹Be⁺ was determined to be $A_{11} = -2677.302\,988(72)$ MHz from the measurements of the $m_F - m_F' = 0$ -0 field independent transition. This measurement provides essential data for the study of the distribution of the halo neutron in the single neutron halo nucleus ¹¹Be through the Bohr-Weisskopf effect.

DOI: 10.1103/PhysRevLett.112.162502

PACS numbers: 21.10.Ky, 27.20.+n, 31.30.Gs, 37.10.Ty

Motivation & Background

Electromagnetically probe the magnetisation of ¹¹Be **Experimental Procedure**

Online spectroscopy at prototype of SLOWRI Results

Electromagnetic Interaction between nucleus and atomic electrons

$$H_{em} = \int \rho(\vec{r})\phi(\vec{r})d^3\vec{r} - \int \vec{j}(\vec{r}) \cdot \vec{A}(\vec{r})d^3\vec{r}$$

 $=H_{em}^{E0} + H_{em}^{M1} + H_{em}^{E2} + \cdots$

: nuclear charge density

- \vec{j} : current charge density

 $\begin{array}{l} \phi & : \text{electric potential} \\ \vec{A} & : \text{vector potential} \end{array} \right\} \text{ by electron}$

 $H_{em}^{\rm E0} = Ze\phi(0)$ $H_{em}^{\rm M1} = -\vec{B}(0)\cdot\vec{\mu}$ $H_{em}^{\mathrm{E2}} = \frac{1}{6} \sum_{i,i} V_{ij} Q_{ij}$

Field Shift $\langle r_c^2 \rangle$ Magnetic Dipole Hyperfine Structure A Electric Quadrupole Hyperfine Structure B

Nuclear Effects in Atomic Spectra

—> nuclear magnetization radius

Electromagnetic probe for ground(/isomeric) state properties of nuclei

Magnetic Hyperfine Interaction

hfs A=nuclear g-factor×hyperfine field/Atomic spinA μ_I/I B(0)J

If B(0)=uniform or nucleus is a point dipole,

 $\frac{A}{g_I/I} = \text{const. among isotopes.}$

Hyperfine Constant

Nuclear g-factor

probed by **inhomogeneous** magnetic field due to (s-)electron probed by **homogeneous** magnetic field externally applied

N

Magnetic Hyperfine Interaction

hfs A=nuclear g-factor×hyperfine field/Atomic spinby valence (s-)electron μ_I/I B(0)J

If B(0)=uniform or nucleus is a point dipole,

 $\frac{A}{g_I/I} = \text{const.}$ among isotopes. Not in real nuclei : Anomaly

 $A = A_p(1 + \epsilon)$ point dipole ***Bohr-Weisskopf effect**

Hyperfine Anomaly

$${}^{1}\Delta^{2} = \epsilon_{1} - \epsilon_{2} \approx \frac{A_{1}/(\mu_{I_{1}}/I_{1})}{A_{2}/(\mu_{I_{2}}/I_{2})} - 1$$
 e.g. for KD
 ${}^{85}\Delta^{87} = 0.3514(3)$ %

Nuclear Volume Effect on HFS A

Bohr-Weisskopf effect

" ϵ depends on the nuclear magnetization distribution."

A. Bohr and V. W. Weisskopf, Phys. Rev. 77, 94 (1950)

inhomogeneous magnetic field due to a valence electron
⇒ detection of magnetisation distribution

Breit-Rosenthal(-Crawford-Schawlow) effect

Nuclear charge distribution changes the wave functions of atomic electrons. ⇒ Shift on HFS

$$A = A_p (1 + \epsilon_{\rm BW}) (1 + \epsilon_{\rm BR})$$

 $\epsilon_{\rm BW} >> \epsilon_{\rm BR}$

H. J. Rosenberg and H. H. Stroke, PRA 5, 1992 (1972)

Hyperfine Anomaly

HFA: 0.1~1%

Independent measurements of A, μ_I w/ an accuracy higher than 10^{-4}

Hyperfine Anomaly of ¹¹Be

Z=4, N=7 1 neutron halo

Unique Probe for Neutron Halo!

M. Wada et al., Nucl. Phys. A 626, 365 (1997)

HFS of ¹¹Be⁺

 $A_{11} \sim 2.6 \text{ GHz}$

 $\nu(2s_{1/2} - 2p_3/2) \sim 957 \text{ THz}$

Doppler Width for Be ions @300 K $\Delta\nu_D = \frac{\nu}{c} \sqrt{\frac{8k_{\rm B}T\ln 2}{m}} \sim 3.7 \text{ THz} >> \text{HFS}$

Collinear Laser Spectroscopy $\Delta \nu \sim 1 MHz$

Direct measurement of HFS via microwave spectroscopy for laser-cooled ions

Magnetization Distribution

VOLUME 74, NUMBER 12

PHYSICAL REVIEW LETTERS

Magnetic Moment Distributions in Tl Nuclei

Ann-Marie Mårtensson-Pendrill

Department of Physics, Chalmers University of Technology and Göteborg University, S-412 96 Göteborg, Sweden (Received 10 June 1994)

$$h_{\rm BW}^{\rm hfs} = \int \left\{ \eta(R-r) \left[g_s \left(\frac{\mathbf{S}_n}{r^2} - \sqrt{10} \left(\mathbf{S}_n \mathbf{C}_n^2 \right)^1 \frac{r}{R^3} \right) + g_L \mathbf{L}_n \left(\frac{1}{r^2} - \frac{r}{R^3} \right) \right] \times \boldsymbol{\alpha} \right\} \rho_m(R) R^2 dR$$

$$\Delta_{\rm BW} = b_2 \delta \langle r_m^2 \rangle + b_4 \delta \langle r_m^4 \rangle + \cdots$$

$$\Delta_{\rm BW} = b_{2s} d_2 \delta \langle r^2 \rangle + b_{4s} d_4 \delta \langle r^4 \rangle + \cdots = b_{2s} \lambda_m$$

$$\lambda_{m} = \delta \langle r^{2} \rangle \left(d_{2} + \frac{b_{4s} d_{4}}{b_{2s}} \frac{\delta \langle r^{4} \rangle}{\delta \langle r^{2} \rangle} + \cdots \right).$$
$$\lambda_{c,m} = \lambda_{m} + 1.91(1)\lambda_{c}$$

TABLE II. Hyperfine anomalies: The theoretical values give the relative effect of the magnetic moment distributions on the various terms shown in Table I and are given in terms of b_{2s} factors, i.e., as $\Delta/\lambda_{c,m}$. The experimental hyperfine anomalies were obtained using the magnetic moments [8] $^{203}\mu = 1.62225787\mu_N$ and $^{205}\mu = 1.63831461\mu_N$. The $\lambda_{c,m}$ values shown in the last line were extracted by combining theoretical and experimental values, but the error bars do not reflect the theoretical uncertainty.

	$6p_{1/2}$	$6p_{3/2}$	7 <i>s</i>
$\Delta/\lambda_{c.m}(10^{-4}/\mathrm{fm}^2)$			
DF(BO)	-2.26	0	-7.95
RPA	-4.89	-5.02	-5.86
Corr	-4.12	-4.24	-1.63
Total Experiment	-2.48	43.0	-7.62
$\Delta(10^{-4})$	-1.04 ª	16.26 ^b	$-3.4(18)^{\circ}$
$\lambda_{c,m}$ (fm ²)	0.42	0.38	0.45(24)

$$^{203:205}\delta\langle r_m^2 \rangle = 0.26(2) \text{ fm}^2$$

^aLurio and Prodell, Ref. [3].

^bGould, Ref. [4].

^cHermann et al., Z. Phys. D 28, 127 (1993).

Magnetization Distribution

VOLUME 83, NUMBER 5

Hyperfine Anomaly Measurements in Francium Isotopes and the Radial Distribution of Neutrons

J. S. Grossman, L. A. Orozco, M. R. Pearson, J. E. Simsarian,* G. D. Sprouse, and W. Z. Zhao[†] Department of Physics and Astronomy, State University of New York, Stony Brook, New York 11794-3800 (Received 5 April 1999)

FIG. 3. Ratio of hyperfine A magnetic dipole constants of $7S_{1/2}$ and $7P_{1/2}$ states and differential changes observed for five different Fr isotopes. *a*: point nucleus; *b*: charge radius equal to magnetic radius; *c*: Stroke calculation method.

 A/μ_I :unknown

compare A_s/A_p

$$\rho_A = \frac{W_{\text{extended}}^S}{W_{\text{extended}}^P} = \frac{W_{\text{point}}^S [1 + \epsilon(A, S)]}{W_{\text{point}}^P [1 + \epsilon(A, P)]},$$

$$\rho_A \approx \rho_0 [1 + \epsilon(A, S) - \epsilon(A, P)],$$

$$\rho = \rho_0 (1 - \lambda_m \langle r^2 \rangle_m^{1/2})$$

for Fr $\lambda_m = +0.0046 \text{ fm}^{-1}$

Magnetization Distribution

In the non relativistic QED approach, relativistic and QED corrections are expressed in terms of an effective Hamiltonian, so the expansion in the finestructure constant α is of the form

$$E_{\rm hfs} = \langle H_{\rm hfs}^{(4)} \rangle + \langle H_{\rm hfs}^{(5)} \rangle + 2 \left\langle H^{(4)} \frac{1}{(E-H)'} H_{\rm hfs}^{(4)} \right\rangle + \langle H_{\rm hfs}^{(6)} \rangle + \langle H_{\rm rad}^{(6)} \rangle + \langle H_{\rm hfs}^{(7)} \rangle + \cdots$$

If the nucleus is described by the electric $\rho_E(r)$ and the magnetic $\rho_M(r)$ form factors,

$$H_{\rm hfs}^{(5)} = -H_{\rm hfs}^A 2Z\alpha m r_Z$$

Zeemach radius: $r_Z = \int d^3r d^3r' \rho_E(r) \rho_M(r') |\vec{r} - \vec{r'}|$

The more accurate formula goes beyond the elastic form factor treatment.

$$\begin{aligned} H_{\rm hfs}^{(5)} &= \frac{\pi \alpha^2}{2} \sum_a \delta^3(r_a) \int d^3r d^3r' \langle \rho(\vec{r}), \vec{\sigma}_a \cdot (\vec{r} - \vec{r'}) \times \vec{j}(\vec{r'}) | \vec{r} - \vec{r'} | \rangle \\ &= -H_{\rm hfs}^A 2Z \alpha m \widetilde{r}_z \end{aligned}$$

Both formulas include the same feature: linear dependence on the average distance of the magnetic moment density from the charge density.

TABLE III. Contributions in MHz to the hyperfine splitting constant A in ^{6,7}Li. Used constants are g = 2.00231930436153(53), $\alpha^{-1} = 137.035999074(44)$, the next-to-last row is a Zemach radius inferred from comparison of experiment (expt) [4] with theoretical (theor) value for the point nucleus.

	⁷ Li	⁶ Li
$\varepsilon \times 10^{-9}$	24.348 067(13)	9.219 580(7)
$\epsilon \alpha^4 g A^{(4)}/2$	401.654 08(21)	152.083 69(11)
$\varepsilon \alpha^5 A_{\rm rec}^{(5)}$	$-0.004\ 14$	-0.001 80
$\epsilon \alpha^6 A^{(6)}$	0.260 08(2)	0.09848(1)
$\epsilon \alpha^7 A^{(7)}$	$-0.010\ 2(13)$	-0.003 9(5)
A_{theor} (point nucleus)	401.8998(13)	152.1765(5)
Reference [6]	401.903(11)	152.1778(42)
A _{expt}	401.752 043 3(5)	152.136839(2)
$(A_{\text{expt}} - A_{\text{theor}})/A_{\text{expt}}$	-368(3) ppm	-261(3) ppm
Reference [6]	-369(23) ppm	-368(60) ppm
(nuclear calculations)		
<i>r̃</i> _Z	3.25(3) fm	2.30(3) fm
r _E	2.390(30) fm	2.540(28) fm

TABLE IV. Contributions in MHz to the hyperfine splitting constant *A* in ⁹Be⁺; physical constants are g = 2.00231930436153(53) and $\alpha^{-1} = 137.035999074(44)$. The second uncertainty of *A*_{theor} comes from the nuclear magnetic moment.

	⁹ Be ⁺
$\mu[\mu_N]$ (Ref. [25])	- 1.177 432(3)
Atomic mass $[u]$ (Ref. [26]) g_N	$-1.755\ 335\ 5(25)$
$\varepsilon \times 10^{-9}$	- 6.602 679(17)
$\varepsilon \alpha^4 g/2A^{(4)}$ $\varepsilon \alpha^5 A^{(5)}$	- 624.600 44
$\varepsilon \alpha^{6} A^{(6)}$	-0.82096
$\varepsilon \alpha^7 A^{(7)}$	0.021 8(36)
A_{theor} (point nucleus)	-625.3927(36)(16)
Ref. [23] A_{expt} (Ref. [27])	- 625.401(22) - 625.008 837 048(10)
$(A_{\text{expt}} - A_{\text{theor}})/A_{\text{expt}}$	-614(6)(3) ppm
Ref. [23] (theory) \tilde{r}_{a}	-514(16) ppm 4 07(5)(2) fm
r_E (Ref. [28])	2.519(12) fm

by M. Puchalski and K. Pachucki PRL **111**, 243001 (2013) and PRA **89**, 032510 (2014)

Experimental Procedure

Optical System

beat signal between frequency comb & laser

APS » Journals » Physics » Synopses » How do you trap a very high-energy ion?

How do you trap a very high-energy ion?

Precision Measurement of the Hyperfine Structure of Laser-Cooled Radioactive ⁷Be⁺ lons Produced by Projectile Fragmentation

K. Okada, M. Wada, T. Nakamura, A. Takamine, V. Lioubimov, P. Schury, Y. Ishida, T. Sonoda, M. Ogawa, Y. Yamazaki, Y. Kanai, T. M. Kojima, A. Yoshida, T. Kubo, I. Katayama, S. Ohtani, H. Wollnik, and H. A. Schuessler

Phys. Rev. Lett. 101, 212502 (Published November 18, 2008)

< ShareThis 🔹 Nuclear Physics

Measurements of nuclear moments give details about nuclear structure that cannot be obtained in any other way. However, traditional methods like nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) require large numbers of stable nuclei to make a measurement and cannot be applied to unstable radioactive nuclei, which are usually produced in very small numbers. Instead, these unstable nuclei are best measured in traps, where atoms can be held for a long enough time to make sensitive measurements. The challenge is to take nuclei that were created in a high-energy collision and slow, trap, and cool them to make a precision measurement.

Writing in *Physical Review Letters*, a group at the newly commissioned Slow Radioactive Ion (SLOWRI) facility at RIKEN in Japan reports they have trapped and measured the magnetic moment of unstable ⁷Be ions. The group starts with ⁷Be ions from a high-energy fragmentation reaction and cools away 15 orders of magnitude in their kinetic energy, leaving trapped ions with temperatures less than 10 mK. The RIKEN team then used a laser method to measure the atomic hyperfine structure of the ions to deduce the nuclear magnetic moment of ⁷Be.

PRL Celebrates 50 Years

- Editorials and Essays
- Milestone Letters
- PRL Timeline
- Special Events

Coming Soon in Physics

 Iron strength for magnetic semiconductors

Now in Focus Light Bends Glass December 10, 2008

An experiment showing that an optical fiber recoils as light exits it addresses a centuryold controversy over the momentum of light in transparent materials.

How to cool an atom by laser?

Cooled in total

How cool can the atom be?

Doppler Cooling Limit

$$T_{\rm D} = rac{\hbar\Gamma}{2k_{
m B}}$$
 for Be⁺ 2s $ightarrow$ 2p
($\Gamma = 18~{
m MHz}$)

 Γ : natural width

 $T_{\rm D} = 438 \ \mu K \Leftrightarrow 39 \ {\rm neV}$ in theory balance with heating effects practically

Laser Cooling of Be⁺

Requirement for laser cooling

Quick cycle

Absorption: 41 ns @ 100 mW/cm² $\} \Rightarrow 1$ cycle 50 ns Emission: 8.8 ns

 $|\Delta \vec{p}| \sim 128 \ \mathrm{mm/s}$ in one cycle

To cool Be⁺ ~500 m/s (a) 300 K \Rightarrow cooling time > 0.2 ms

Contractions of a contract of

available wavelength dye laser 626 nm <u>SHG</u> > 313 nm

HFS Spectroscopy of ⁷Be⁺

K. Okada *et al.*, PRL **101**, 212502 (2008)

Laser-Microwave Double Resonance

- 1. Optical Pumping to Recyclable State by σ + or σ Laser
- 2. Laser Cooling
- 3. Microwave induces hf transition
- 4. Fluorescence detects population

HFS Spectroscopy of ⁷Be⁺

K. Okada et al., PRL 101, 212502 (2008)

Quantity	$I_{\rm coil} = 12$ A	$I_{\rm coil} = 14$ A
B (mT)	0.61061(13)	0.71277(4)
ν^+ (MHz)	1472.745 4(32)	1470.6131(13)
ν^- (MHz)	1498.413 8(46)	1500.577 1(13)

Breit-Rabi formulae

$$\nu^{+} = -A + \frac{1}{2}\sqrt{4A^{2} - 2Ab(-1+\gamma) + b^{2}(-1+\gamma)^{2}} + \frac{1}{2}b(1-5\gamma)$$

$$\nu^{-} = -A + \frac{1}{2}\sqrt{4A^{2} - 2Ab(-1+\gamma) + b^{2}(-1+\gamma)^{2}} - \frac{1}{2}b(1+\gamma)$$

$$b = g_{J}\mu_{B}B$$

 $\Rightarrow A = -742.77228(43) \text{ MHz}(5 \cdot 10^{-7})$

 $\frac{\mathrm{d}
u}{\mathrm{d}B} = \mu_{\mathrm{B}} \frac{4I}{2I+1} = 21 \ \mathrm{MHz/mT} \Rightarrow I = 3/2$

 $A \Rightarrow \mu_I = -1.39928(1)$ if $|^7\Delta^9| < 10^{-5}$

HFS Spectroscopy of ⁷Be⁺

K. Okada et al., PRL 101, 212502 (2008)

Comparison with Theory

TABLE II:	Nuclear	$\operatorname{magnetic}$	moment	of 7	Be	$[\mu_{ m N}]$	
-----------	---------	---------------------------	-------------------------	------	----	----------------	--

Present experimental value	-1.39928(1)
Shell model		
Cohen-Kurath (8-16)POT [19]	-1.3787	1.5%
Large-basis shell model [20]	-1.132	20%
Ab-initio non-core shell model [21]	-1.138	2070
Quantum Monte Carlo		
Variational quantum Monte Carlo [22]	-1.110(2)	20%
Empirical		
Linear relations $\gamma_p = \alpha \gamma_n + \beta [24]^a$	-1.462	5%
Isospin doublet $(\langle \Sigma \sigma_z \rangle = 1)$	-1.377	

 ${}^{a}\gamma_{n} = \mu({}^{7}\text{Li})/I = +3.2564625(4)/(3/2)$ [18] is used.

- [19] S. Cohen and D. Kurath, Nucl. Phys. 73, 1 (1965).
- [20] P. Navŕatil and B.R. Barrett, Phys. Rev. C 57, 3119 (1998).
- [21] P. Navŕatil and W.E. Ormand, Phys. Rev. C 68, 034305 (2003).
- [22] B. S. Pudliner, V.R. Pandharipande, J. Carlson, S.C. Pieper, and R.B. Wiringa, Phys. Rev. C 56, 1720 (1997).
- [23] R. Schiavilla, V.R. Pandharipande, and D.O. Riska, Phys. Rev. C40, 2294 (1989).
- [24] B. Buck, A. C. Merchant, and S. M. Perez, Phys. Rev. C 63, 037301 (2001).

Time Sequence of ¹¹Be Experiment 300 1500 spectroscopy Beam Intensity [arb. u.] LIF Intensity [cps] ooling 200 1000 100 500 trapping Beam ON OFF 0 0 100 200 300 400 500 600 0 Time [sec]

- 1.Trapping for 40 s
- 2. Laser cooling (frequency chirping) in a few seconds
- 3. Spectroscopy: 2s scan x ~20

HFS Spectroscopy of ¹¹Be⁺

B = 0.69797(11) mT

Why not a dip but a peak?

Optical Pumping of Be isotopes

¹¹Be⁺ ions tend to remain in smaller *F* state compared to ^{7,9}Be⁺

Laser cooling by only one laser \Rightarrow^{11} Be is difficult to optically pump because its hfs is larger than others?

HFS Spectroscopy of ¹¹Be⁺

Systematic Errors for ¹¹Be⁺ HFS A

Light shift? No. Laser is chopped off.

Magnetic field? Measured from ⁹Be⁺ HFS Feedback control to <10 ppm</p>

Microwave synthesizer? Locked to GPS

AC Stark shift due to rf voltage? second-order Doppler shift $\Delta \nu_D = -\frac{3k_BT}{2mc^2} \left(1 + \frac{2}{3} \left(\frac{\omega_s}{\omega_m}\right)^2\right) \cdot \nu = -5.6 \times 10^{-13} \text{ MHz}$ quadratic Stark shift $\Delta \nu_S = -4k_s \left(\frac{\omega_s}{\omega_m}\right)^2 \frac{m\Omega^2}{e^2} k_B T \cdot \nu = -5.0 \times 10^{-23} \text{ MHz}$

Magnetic Field Determination

HFS spectroscopy of ⁹Be⁺

$$\begin{split} b &= -\frac{1}{2} \left\{ \left(\nu_9^- + A_9\right) \left(\frac{1}{\gamma_9} + 1\right) + \frac{A}{2} \left(-\frac{1}{\gamma_9} + 1\right) \right\} \\ &+ \sqrt{\frac{1}{4} \left\{ \left(\nu_9^- + A_9\right) \left(\frac{1}{\gamma_9} + 1\right) + \frac{A}{2} \left(-\frac{1}{\gamma_9} + 1\right) \right\}^2 - \frac{1}{\gamma_9} (\nu_9^- + A_9)^2 + \frac{1}{\gamma_9} A_9^2} \\ \Delta b &= \left| -\frac{1}{2} \left(\frac{1}{\gamma_9} + \frac{1}{2} \frac{\frac{1}{2} \left\{ \left(\nu_9^- + A_9\right) \left(\frac{1}{\gamma_9} + 1\right) + \frac{A_9}{2} \left(-\frac{1}{\gamma_9} + 1\right) \right\} \left(\frac{1}{\gamma_9} + 1\right) - \frac{2}{\gamma_9} (\nu_9^- + A_9)}{\sqrt{\frac{1}{4} \left\{ \left(\nu_9^- + A_9\right) \left(\frac{1}{\gamma_9} + 1\right) + \frac{A}{2} \left(-\frac{1}{\gamma_9} + 1\right) \right\}^2 - \frac{1}{\gamma_9} (\nu_9^- + A_9)^2 + \frac{1}{\gamma_9} A_9^2}} \right) \right| \Delta \nu_6 \right| \\ \Delta b = \left| -\frac{1}{2} \left(\frac{1}{\gamma_9} + \frac{1}{2} \frac{\frac{1}{2} \left\{ \left(\nu_9^- + A_9\right) \left(\frac{1}{\gamma_9} + 1\right) + \frac{A}{2} \left(-\frac{1}{\gamma_9} + 1\right) \right\}^2 - \frac{1}{\gamma_9} (\nu_9^- + A_9)^2 + \frac{1}{\gamma_9} A_9^2} \right) \right| \Delta \nu_6 \right| \\ \Delta b = \left| -\frac{1}{2} \left(\frac{1}{\gamma_9} + \frac{1}{2} \frac{\frac{1}{2} \left\{ \left(\nu_9^- + A_9\right) \left(\frac{1}{\gamma_9} + 1\right) + \frac{A}{2} \left(-\frac{1}{\gamma_9} + 1\right) \right\}^2 - \frac{1}{\gamma_9} (\nu_9^- + A_9)^2 + \frac{1}{\gamma_9} A_9^2} \right) \right| \Delta \nu_6 \right| \\ \Delta b = \left| -\frac{1}{2} \left(\frac{1}{\gamma_9} + \frac{1}{2} \frac{\frac{1}{2} \left\{ \left(\nu_9^- + A_9\right) \left(\frac{1}{\gamma_9} + 1\right) + \frac{A}{2} \left(-\frac{1}{\gamma_9} + 1\right) \right\}^2 - \frac{1}{\gamma_9} \left(\nu_9^- + A_9\right)^2 + \frac{1}{\gamma_9} A_9^2} \right) \right| \Delta \nu_6 \right| \\ \Delta b = \left| -\frac{1}{2} \left(\frac{1}{\gamma_9} + \frac{1}{2} \frac{1}{2} \frac{1}{\gamma_9} \left(\frac{1}{\gamma_9} + A_9\right) \left(\frac{1}{\gamma_9} + 1\right) + \frac{A}{2} \left(-\frac{1}{\gamma_9} + 1\right) \right\}^2 - \frac{1}{\gamma_9} \left(\nu_9^- + A_9\right)^2 + \frac{1}{\gamma_9} A_9^2} \right) \right| \\ \Delta b = \left| \frac{1}{\gamma_9} \left(\frac{1}{\gamma_9} + \frac{1}{\gamma_9} \frac{1}{\gamma_9} \left(\frac{1}{\gamma_9} + \frac{1}{\gamma_9} + \frac{1}{\gamma_9} \left(\frac{1}{\gamma_9} + \frac{1}{\gamma_9}$$

 $b = \frac{-A_9 - \sqrt{(\nu_9^{0-})^2 - 3A_9^2}}{1 - \gamma_9}$ $\Delta b = \left| -\frac{\nu_9^{0-}}{(1 - \gamma_9)\sqrt{(\nu_9^{0-})^2 - 3A_9^2}} \right| \Delta \nu_9^{0-}$

B = 1.102938(59) mT

B = 1.10310(12) mT

Precision of hfs constant A for RI (hfa-measured nuclei)

J. R. Persson, Atomic Data and Nucelar Data Tables 99, 62 (2013)

Precision of hfs constant A for RI

Results of Be HFS Spectroscopy

Our Works

	Be-7	Be-9	Be-11
HFS constant	-742.77228(43)	-625.0088370529(11)	-2677.302988(72)
Nuclear Mag. Moment [n.m]		-1.177432(3)	(-)1.6816(8)
{deduced from	{ -1.39928(1) }		{ -1.68166(11) }

$${}^{9}\Delta^{11} = \frac{A_{9}/(\mu_{9}/I_{9})}{A_{11}/(\mu_{11}/I_{11})} - 1 = 2.2 \qquad \times 10^{-4}$$

Results of Be HFS Spectroscopy

Our Works

	Be-7	Be-9	Be-11
HFS constant	-742.77228(43)	-625.0088370529(11)	-2677.302988(72)
Nuclear Mag. Moment [n.m]		-1.177432(3)	(-)1.6816(8)
{deduced from	{ -1.39928(1) }		{ -1.68166(11) }

$${}^{9}\Delta^{11} = \frac{A_{9}/(\mu_{9}/I_{9})}{A_{11}/(\mu_{11}/I_{11})} - 1 = 2.2(47) \times 10^{-4}$$

- More than one order of magnitude better accuracy for μ_l is required.
- More seriously, β -NMR method cannot be applied to Be-7.

→ How to measure it ?

HFS spectroscopy under a higher magnetic field

Superconducting Helmholtz Magnet ~1 T

Accurate and Independent Measurement of μ_1 and A

Breit-Rabi's Formula:

$$W_{F}(m_{J},m_{I},b) = -\frac{A}{4} - (m_{J} + m_{I})\gamma b$$

+ $m_{J}\sqrt{A^{2}(\frac{1}{2} + I)^{2} + 2A(m_{J} + m_{I})(\gamma - 1)b + (\gamma - 1)^{2}b^{2}}$
 $b = g_{J}\mu_{B}B_{0}/h, \quad \gamma = g_{I}'/g_{J}$

 $A = -625\ 008\ 835.23\ (75)\ Hz$ $g'_I / g_J = 2.134\ 780\ 33\ (28)\ \times\ 10^{-4}$ T. Nakamura *et al.*, Opt. Comm 205,329 (2002)

> \rightarrow ⁷Be⁺, ¹¹Be⁺ \rightarrow B-W effect

Acknowledgements

RIKEN, Nishina Accelerator Center

M. Wada, T. Sonoda, P. Schury, T. Kubo

Sophia Univ. K. Okada

JAEA H. limura

RIKEN, Atomic Physics Lab. T. Nakamura, Y. Ishida, Y. Yamazaki, Y. Kanai

Univ. Electro-Comm., ILS S. Ohtani

IPNS, KEK I. Katayama

New Mexico State Univ., USA H. Wollnik

Texas A&M Univ., USA H. A. Schuessler

