

RIKEN/RBRC Itaru Nakagawa

Not well measured yet!

偏極準非弾性散乱(SIDIS)

COMPA

PC

Longitudinal Spin Structure

Subprocess of pp

 $A_{LL} \propto [\omega_{gg}] \Delta g \Delta g + [\omega_{gq} \Delta q] \Delta g + [\omega_{qq} \Delta q \Delta q]$

Gluon is the major player compared to DIS/SIDIS

DISEproton-proton

Direct gluon polarisation measurement via tagging PGF process

Non direct measurement of gluon polarisation - QCD fits

To select PGF process two methods are used @COMPASS:

Large Q^2 : $Q^2 > 1 (GeV/c)^2$

Same decomposition for inclusive sample to determine A₁^{LO}

Optimization needed : "clean" (more PGF, "pure") sample with limited statistics or less PGF populated but larger sample

10

The Relativistic Heavy Ion Collider accelerator complex at Brookhaven National Laboratory

RHIC *p+p* accelerator complex

RHIC *p+p* accelerator complex

RHIC - The Current Main Experiments

STAR **"DNA**":

large acceptance and low mass, full acceptance and PID for $|\eta| < 1$, $\Delta \phi \sim 2\pi$, complemented with forward E.M. calorimetry key strengths for jets and correlations

PHENIX "DNA":

- high resolution and rate capabilities,
- central arms $\eta < 0.35, \Delta \phi \sim \pi$ with key strengths for π^0 and η
- forward muon arms 1.2<I η <2.4

Vigorous ongoing upgrade programs, e.g. PHENIX FVTX, MPC-EX STAR FMS-PS, Roman Pots

Slide from Renee Fatemi, Spin-2014

Highlights of RHIC Spin Program (Outline)

Spin Puzzle

Longitudinal Spin Structure

- <u>Gluon Spin</u> (this talk)
- Sea Quark (following talks)

Transverse Spin Structure

- Sivers Effect
- Collins Effect
- Higher Twist ...

RHIC Polarized Spin Program

1200 1000 **Delivered Integrated** 500 (510) GeV Luminosity [/pb] Transverse Transverse 800 200 GeV 62 GeV 600 400 200 0

Run9 Run11 Run12 Run13

Run5

Run6

Run8

RHIC Polarized Proton Runs

RHIC Polarized Spin Program Beam Polarization

RHIC Polarized Proton Runs

The PHENIX Detector

- Philosophy
 - high resolution & high-rate at the cost of acceptance
 - trigger for rare events
- Central Arms
 - $|\eta| < 0.35, \Delta \phi \sim \pi$
 - Momentum, Energy, PID
 - Muon Arms
 - $-1.2 < |\eta| < 2.4$
 - Momentum (MuTr)
- <u>Muon Piston Calorimeter</u>
 3.1 < |η| < 3.9

∆G DOUBLE HELICITY A_{LL} RESULTS

Probe	Advantage
π^0	Statistics
η	Different fragmentation
π^0 - π^0 correlation	Kinematic constraint
charged π	∆G sign
heavy flavor decay <i>e</i> -	Lower x, g-g dominant
MPC cluster	Lower x
Jet	Statistics (STAR)
Jet-Jet	Kinematics Constraint (STAR)

Central Arm π^0 , η

 Production cross section is high and from gluon interaction
PHENIX EMCal trigger friendly
Found in 2 photons invariant mass

A_{II} : Central Arm π^0 , η

Statistically enriched observable

- ∆G through
 - a different flavor structure
 - fragmentation function

Statistically Challenging

Run9 PHENIX π^0 and STAR Jet @ 200GeV

Global Fitting Models

Fit	Data sets	Parton Distributions	Uncertainties	Latest update
AAC08	DIS, π^0	Δu^+ , Δd^+ , Δs^+ , Δg	Hessian $\Delta\chi^2=12.95$	[arXiv:0808.0413]
BB10	DIS	Δu^- , Δd^- , $\Delta ar q$, Δg	Hessian $\Delta\chi^2=1$	[arXiv:1005.3113]
LSS10	DIS, SIDIS	Δu^+ , Δd^+ , $\Delta ar u$, $\Delta ar d$, $\Delta ar s$, Δg	Hessian $\Delta\chi^2=1$	[arXiv:1010.0574]
JAM13	DIS	Δu^+ , Δd^+ , $\Delta ar u$, $\Delta ar d$, $\Delta ar s$, Δg	Hessian $\Delta\chi^2=1$	[arXiv:1310.3734]
DSSV++	DIS, SIDIS, π^0 , jets	Δu^+ , Δd^+ , $\Delta \bar{u}$, $\Delta \bar{d}$, $\Delta \bar{s}$, Δg	Hessian $\Delta\chi^2=1$ Lagr. mult. $\Delta\chi^2/\chi^2=2\%$	[arXiv:1404.4293]
NNPDFpol1.1	DIS, OC, W [±] , jets	Δu^+ , Δd^+ , $\Delta ar u$, $\Delta ar d$, $\Delta ar s$, Δg	Monte Carlo	[arXiv:1406.5539]

Global Fit Interpretation

- DSSV (Excluding Run9 data)
- New Fit (DSSV++) (Including Run9 data)

Neural Network & DSSV

- Both NNPDF and DSSV++ suggest positive gluon polarization
- They are quite consistent to each other!

COMPASS High Q² Data

More Compass Results

Preliminary results on asymmetries for low Q² more details: DIS 2014: M. Levillain A. Nunes

Not necessarily indication of positive gluon polarization (yet?)

Gluon Polarization at RHIC - What is next?

Extend sensitivity to smaller x_g forward rapidity, $x_g \sim exp(-\eta)$, $\sqrt{s} = 500$ GeV data, $x_g \sim 1/\sqrt{s}$

Further *precision* from jet and neutral pion probes, and from *complementary* probes

Slide from Renee Fatemi, Spin-2014

PHENIX central pi0 Preliminary

ΔG(X) AT 500GEV

∆G @ 510 GeV

Access to smaller x region

Larger error @ overlapping x compared to 200GeV

10 -2

500 (510) GeV Integrated Luminosity (Delivered)

Central arm π^0

Х

x_{min}

PHENIX Run13 π^0

Preliminary release in Spin2014 conference by Inseok Yoon (SNU/RIKEN)

• Different scale and ths different size of asymmetries expected. Both of data and theory support it. Evolution effect?

$$x_T = \frac{2P_T}{\sqrt{s}}$$
: approximate version of the average x.

Large positive asymmetry was observed. Consistent with latest positive ΔG results.

Slide from Inseok Yoon, Spin 2014

STAR inclusive Jet @ 500GeV

STAR pi0 @ 510 GeV Preliminary

FORWARD MEASUREMENTS

Backward (Forward) Kinematics

Sub-process in Forward

Forward EM Calorimetry at STAR

NAUL

BEMC

TPC

PRIMARY FOCUS:

- Observes $\pi^0 \rightarrow \gamma + \gamma$ as 2 cluster events
- Forward observables → access to low-x gluons

5

39

STAR Forward pi0

Gluon Polarization - other channels, smaller xg

Initial neutral pion data, 4.8 pb⁻¹ at \sqrt{s} = 200 GeV, at more forward rapidity:

Phys.Rev. D89 (2014) 1, 012001

Proof-of-concept; needs further precision and $\sqrt{s} = 500$ GeV and, eventually, upgrades.

Slide from Renee Fatemi, Spin-2014

Forward $\pi^0 A_{\mu}$ Measurement – p_{τ} -Dependence

 π^0 Double Helicity Asymmetry A₁₁ vs. p_T

100 mr Constant Fit Result: $A_{LL} = -3.3 \times 10^{-4} \pm 8.4 \times 10^{-4}$ $\chi^2 / NDF = 12.5 / 5$

* 100 mr points are offset by p_{τ} + 0.1 GeV/c for visibility

Slide from Christopher Dilks, Spin 2014

т ,

13

Exploring Lower-x by Forward MPC

<u>Muon Piston Calorimeter</u> 3.1<|η|<3.9

- Low P_T Reconstructed π⁰
- High PT Merged π^0

Cluster A_{LL}

Summary

- Good data sets available up to Run9 from PHENIX and STAR by now.
- Indicated positive ΔG in 0.05<x<0.2 predicted by DSSV ++ and NNPDF @Q²~10GeV
- Positive DG is consistent with COMPASS high-Q2 data (Q²~3GeV).
- Still many observables are consistent with zero, but statistically not sufficient.
- New PHENIX 510GeV pi0 show positive ΔG
- Further 510GeV and forward measurements analysis are on going.