Fermilab SeaQuest 実験

第4回 高エネルギー QCD・核子構造 勉強会 2014.11.01 @ 東工大

中野健一

東工大

Outline

- ▶ E906/SeaQuest 実験の目的
 - ▷ Drell-Yan 反応を用いた核子構造の測定
 - \triangleright Sea queark のフレーバー非対称性 ($ar{d}/ar{u}$)
 - ▷ Boer-Mulders 分布関数 (h₁[⊥])
 - ▷ 等々...
- 🕨 セットアップ & スケジュール
 - ▷ 最初の物理ラン (Run-2) が終わり、次の物理ランが始まる時期
- ▶ 状況 & 将来予測
 - ▷ Run-2 データの解析に基づいて
- ▶ 次世代 偏極 Drell-Yan 実験 (E1027 & E1039 @ Fermilab)
- ▶ まとめ

Drell-Yan Process @ Forward

Cross section @ LO

$$\begin{aligned} \frac{d^2\sigma}{dx_B dx_T} &= \frac{4\pi\alpha^2}{9x_B x_T} \frac{1}{s} \sum_i e_i^2 \\ &\times \left\{ q_i^{\mathrm{B}}(x_B) \bar{q}_i^{\mathrm{T}}(x_T) + \bar{q}_i^{\mathrm{B}}(x_B) q_i^{\mathrm{T}}(x_T) \right\} \end{aligned}$$

(B: beam, T: target)

- ▷ Always involve anti quark ... cf. DIS
- ▷ Quark @ beam & anti-quark @ target since $x_{\rm B} \gg x_{\rm T}$ & $q(x) \gg \bar{q}(x)$ at large x

Flavor Asymmetry in Anti-Quark (\bar{u} vs \bar{d}) Dist.

- Symmetric?
 - ▷ Simple assumption: $\bar{d}(x) = \bar{u}(x)$, which gives $\int \bar{d}(x) dx = \int \bar{u}(x) dx$
 - Gottfried Sum Rule:

$$\begin{split} S_{G} &= \int_{0}^{1} \frac{dx}{x} \left\{ F_{2p}(x) - F_{2n}(x) \right\} \\ &= \frac{1}{3} \int \left\{ \left(u(x) - \bar{u}(x) \right) - \left(d(x) - \bar{d}(x) \right) \right\} dx - \frac{2}{3} \int \left(\bar{d}(x) - \bar{u}(x) \right) dx \\ &= \frac{1}{3} \quad \text{if} \quad \int \bar{d}(x) dx = \int \bar{u}(x) dx \quad \text{or } \mu_{\text{CM}} = \frac{1}{2} \int \left(\bar{d}(x) - \bar{u}(x) \right) dx \\ &= \frac{1}{3} \quad \text{if} \quad \int \bar{d}(x) dx = \int \bar{u}(x) dx \quad \text{or } \mu_{\text{CM}} = \frac{1}{2} \int \left(\bar{d}(x) - \bar{u}(x) \right) dx \\ &= \frac{1}{3} \int \left(\bar{d}(x) - \bar{u}(x) \right) dx = \int \bar{u}(x) dx \quad \text{or } \mu_{\text{CM}} = \frac{1}{2} \int \left(\bar{d}(x) - \bar{u}(x) \right) dx \\ &= \frac{1}{3} \int \left(\bar{d}(x) - \bar{u}(x) \right) dx \quad \text{or } \mu_{\text{CM}} = \frac{1}{2} \int \left(\bar{d}(x) - \bar{u}(x) \right) dx \\ &= \frac{1}{3} \int \left(\bar{d}(x) - \bar{u}(x) \right) dx \quad \text{or } \mu_{\text{CM}} = \frac{1}{2} \int \left(\bar{d}(x) - \bar{u}(x) \right) dx \\ &= \frac{1}{3} \int \left(\bar{d}(x) - \bar{u}(x) \right) dx \quad \text{or } \mu_{\text{CM}} = \frac{1}{2} \int \left(\bar{d}(x) - \bar{u}(x) \right) dx \\ &= \frac{1}{3} \int \left(\bar{d}(x) - \bar{d}(x) \right) dx \quad \text{or } \mu_{\text{CM}} = \frac{1}{2} \int \left(\bar{d}(x) - \bar{d}(x) \right) dx \\ &= \frac{1}{3} \int \left(\bar{d}(x) - \bar{d}(x) \right) dx \quad \text{or } \mu_{\text{CM}} = \frac{1}{2} \int \left(\bar{d}(x) - \bar{d}(x) \right) dx \\ &= \frac{1}{3} \int \left(\bar{d}(x) - \bar{d}(x) \right) dx \quad \text{or } \mu_{\text{CM}} = \frac{1}{2} \int \left(\bar{d}(x) - \bar{d}(x) \right) dx \\ &= \frac{1}{3} \int \left(\bar{d}(x) - \bar{d}(x) \right) dx \quad \text{or } \mu_{\text{CM}} = \frac{1}{2} \int \left(\bar{d}(x) - \bar{d}(x) \right) dx \\ &= \frac{1}{3} \int \left(\bar{d}(x) - \bar{d}(x) \right) dx \quad \text{or } \mu_{\text{CM}} = \frac{1}{2} \int \left(\bar{d}(x) - \bar{d}(x) \right) dx \\ &= \frac{1}{3} \int \left(\bar{d}(x) - \bar{d}(x) \right) dx \quad \text{or } \mu_{\text{CM}} = \frac{1}{2} \int \left(\bar{d}(x) - \bar{d}(x) \right) dx \\ &= \frac{1}{3} \int \left(\bar{d}(x) - \bar{d}(x) \right) dx \quad \text{or } \mu_{\text{CM}} = \frac{1}{2} \int \left(\bar{d}(x) - \bar{d}(x) \right) dx \\ &= \frac{1}{3} \int \left(\bar{d}(x) - \bar{d}(x) \right) dx \quad \text{or } \mu_{\text{CM}} = \frac{1}{2} \int \left(\bar{d}(x) - \bar{d}(x) \right) dx \\ &= \frac{1}{3} \int \left(\bar{d}(x) - \bar{d}(x) \right) dx \quad \text{or } \mu_{\text{CM}} = \frac{1}{2} \int \left(\bar{d}(x) - \bar{d}(x) \right) dx$$

CERN NMC ('90):

- ▷ $S_G = 0.2281(65) \neq 1/3$ at $x \in (0.004, 0.8)$ & $Q^2 = 4$ GeV² ▷ Not symmetric!
- Not symmetric!
 - $rac{d}{dx} = \int \bar{d}(x) dx > \int \bar{u}(x) dx$
 - arphi $\bar{d}(x) > \bar{u}(x)$ in at least a certain *x* region

Sea-Quark Flavor Asymmetry (\bar{d}/\bar{u})

▶ *x*-dependence of \bar{d}/\bar{u} first measured by Drell-Yan exp.

Examined with theory models (meson cloud model etc.)

> Unique data on
$$\bar{u}(x)
eq \bar{d}(x)$$

▶ SeaQuest will measure $\overline{d}/\overline{u} @ 0.2 \leq x_{Bj} \leq 0.4 \text{ w/} p + p \& p + d$ ▷ x_{Bj} dependence is the key to understand $\overline{d}/\overline{u}$ asym. ▷ Particularly $\overline{d} \geq \overline{u} @ x_{Bj} \sim 0.3$?

Fermilab SeaQuest 実験

The meson cloud model explains the flavor asymmetry in the sea, and requires quarks to carry angular momentum.

 $|p>=p + N\pi + \Delta\pi + ...$

Fermilab SeaQuest 実験

Boer-Mulders Function $(h_1^{\perp}(x, k_T))$

▶ Via measurement of angular distribution with p + p & p + d

$$rac{1}{\sigma}rac{d\sigma}{d\Omega}=rac{3}{4\pi}rac{1}{\lambda+3}\left(1+\lambda\cos^2 heta+\mu\sin2 heta\cos\phi+rac{
u}{2}\sin^2 heta\cos2\phi
ight)$$

- $\begin{tabular}{l} \begin{tabular}{ll} \begi$
- Convolution of two h_1^{\perp}
 - $\stackrel{\triangleright}{\scriptstyle }
 u \propto \left[\begin{array}{c} h_1^{\perp} ext{ of } ar{q} \end{array}
 ight] imes \left[\begin{array}{c} h_1^{\perp} ext{ of } q \end{array}
 ight]
 abla \ h_1^{\perp} ext{ of } q @ x \sim 0.5 \end{array}$
 - $h = h_1^2$ of $q \ll x \sim 0.5$
 - $\triangleright \ h_1^\perp ext{ of } ar q @ x \sim 0.3$
 - ▷ Extraction of h_1^{\perp} from E866/NuSea data ... PRD 81, 034023 (2010), PRD 82, 114025 (2010)

Origin of Violation of Lam-Tung Relation??

▶ Transverse Momentum Dependent (TMD) parton distribution
 ▶ Boer-Mulders effect ... ∝ s · (P × k_T)

- ▷ Arise from correlation between quark spin (s) & transverse momentum (k_T) ... if no correlation, no effect is seen
- Boer-Mulders distribution function

$$\mathbf{h}_{1}^{\perp} = \mathbf{P} - \mathbf{O}$$

 arphi cf. Sivers effect ... $\propto m{S} \cdot (m{P} imes m{k}_T)$

▶ Non-zero $h_1^{\perp} \iff$ non-zero orbital angular mom. \iff non-zero spatial dist.

E906/SeaQuest 実験の セットアップ & スケジュール

Fermilab Proton Beam

- Energy E = 120 GeV($\sqrt{s} = 15 \text{ GeV}$)
- Duty cycle
 - ▷ 60 sec per cycle
 - 5 sec for E906 with slow extraction
 - ▷ The rest for neutrino exp.
- Bunch
 - Length: 1 nsec
 - Interval: 19 nsec (53 MHz)
 - 10¹³ protons in 5 sec in spot size

FNAL E906/SeaQuest Collaboration

Institutes

- Abilene Christian Univ.
- Argonne National Lab
- ▷ Fermi National Accelerator Lab ▷ Univ. of Illinois
- ▷ KEK Jp
- Los Alamos National Lab
- Univ. of Michigan
- RIKEN Jp \triangleright
- Direct Tokyo Tech Jp

- Academia Sinica Tw
- Univ. of Colorado
- - ▷ Ling-Tung Univ. Tw
 - Univ. of Maryland
 - National Kaohsiung Normal Univ.
 - Rutgers Univ. \triangleright
 - Yamagata Univ. Jp

E906/SeaQuest Spectrometer

- Targets ... LH₂, LD₂, C, Fe, W (& empty flask, none) in rotation
 Di-muon trigger with hodoscopes @ St. 1...4
- ▶ Tracking with drift chambers @ St. 1...3 & prop. tubes @ St. 4
- Detect $\mu^{+/-}$ with $p \sim 40$ GeV/c

SeaQuest Schedule

Year	Month	Event
2009	04	Start of building spectrometer
2011	08	Complete spectrometer
2012	03-04	Commissioning run (Run 1)
		(1st beam on March 08)
2012	05	Detector & DAQ upgrade
2013	11	Start of Physics run (Run 2)
		(1st beam on November 08)
2014	09-10	Accelerator maintenance $\leftarrow Now$
2014	11	Re-start of Physics run (Run 3)
2016	X	End

 Two years for 10¹⁹ protons delivered (10¹³ protons/spill × 1 spill/min × 2 years)

E906/SeaQuest 実験の 状況 & 将来予測

Fermilab SeaQuest 実験

Status — Beam

- Intensity
 - $\,\triangleright\,\,{\sim}4{\times}10^{12}$ delivered protons/spill at Run-2 end
 - \triangleright To be 1×10^{13} in Run 3
- Duty factor
 - $Dash \left< I \right>^2 / \left< I^2 \right>$... how uniform the number of protons/bucket is
 - \triangleright Less protons/bucket \Longrightarrow less fake di-muons
 - 60% at minimum in MoU
 - Improvement @ accelerator

Status — Trigger & Hodoscope

- Flexible trigger logic on FPGA
 - ▷ Trigger road = combination of hodoscope hits @ St. 1, 2, 3 & 4
 - Pair of trigger roads = di-muon
 - Large opening angle with straight roads = high mass

Trigger Rate (R) & Beam Intensity (I)

- Primary issue at Run-2 start
- *R* was much higher (>10 kHz) than DAQ bandwidth (5 kHz)
 - $\triangleright~ \operatorname{Observed} R \propto I^2$
 - Due to fake high-p tracks
- Solution
 - ▷ Measured & improved beam duty factor $(\langle I \rangle^2 / \langle I^2 \rangle)$
 - Found & removed "hot" trigger patterns in real data & simulation
- ▶ 4×10^{12} delivered protons/spill at Run-2 end (to be 1×10^{13} in Run 3)

Status of Run-2 Data Analysis

Di-muon mass distribution (preliminary)

- $^{\triangleright}~$ With ${\sim}1\!/\!3$ of Run-2 data
- $\,\triangleright\,$ Events on all targets (LH_2, LD_2, C, Fe & W) are summed up here
- Detectors work nicely as expected
- $ho \,\, {
 m Good} \, J/\psi \,\, {
 m mass} \,\, {
 m resolution} \,\, ({\sim}180 \,\, {
 m MeV})$
 - Drell-Yan dominates @ $M\gtrsim 4~{
 m GeV}$
 - $\,\,{\scriptstyle \triangleright \triangleright}\,\,$ Can separate J/ψ & ψ'
- ▷ Resonable MC/data agreement on mass dependence of acceptance

Measurement Precision at Present

- With part of Run-2 data
 ~5% of expected luminosity
- ▶ Flavor asymmetry $(\bar{d}/\bar{u}) \rightarrow$ & nuclear dependence \downarrow
- The anticipated precision is achievable!

Fermilab SeaQuest 実験

Expected Precision on Angular Distribution

- Data analysis is ongoing
- Estimate with MC
 - \triangleright Assuming the full luminosity (3.4×10¹⁸ recorded protons)
 - $^{\vartriangleright} \ \nu \equiv \text{size of } \cos(2\phi) \ \text{modulation} \propto \big[\ h_1^{\perp} \ \text{of} \ \bar{q} \big] \times \big[\ h_1^{\perp} \ \text{of} \ q \big]$

▷ Probably h_1^{\perp} of \bar{q} is smaller than q, but E906/SeaQuest will measure it with enough accuracy

Fermilab SeaQuest 実験

次世代 偏極 Drell-Yan 実験 (E1027 & E1039 @ Fermilab)

FNAL E-1027 with Polarized Beam

- Proposal @ http://inspirehep.net/record/1216817
- Stage-1 approved
- Use E906/SeaQuest spectrometer (w/ magnetic field adjusted)
- Upgrade source, booster & main injector
 - Based on design & experience of BNL RHIC
 - Detailed design & construction under study

Prospect of E-1027 with Polarized Beam

► Sivers TMD PDF of quark

• Observable:
$$A_N \equiv \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}} \propto \frac{f_{1T}^{\perp,u}(x_B) \cdot \bar{u}(x_T)}{u(x_B) \cdot \bar{u}(x_T)}$$

... similar to ν (cos(2 ϕ) modulation)

- ▷ Red line ... prediction with SIDIS (HERMES & COMPASS) result
- ▷ "Can measure not only sign, but also the size & maybe shape of the Sivers function"

FNAL E-1039 with Polarized Target

- LoI @ http://www.fnal.gov/directorate/program_planning/ June2013PACPublic/P-1039_LOI_polarized_DY.pdf
- Stage-1 approved
- Use E906/SeaQuest spectrometer
- Build polarized target
 - ▷ LANL LDRD project (approved for FY2013-2016)
 - ▷ Existing NH₃ target (UVa or Hall-C polarized target)
 - Modification (pol. direction, cryostat, etc) & Re-commissioning

Prospect of E-1039 with Polarized Target

Sivers TMD PDF of anti-quark

• Observable:

 $A_N \equiv rac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}} \propto rac{u(x_B) \cdot f_{1T}^{\perp,ar{u}}(x_T)}{u(x_B) \cdot ar{u}(x_T)} \ ... ext{ similar to }
u (\cos(2\phi) ext{ modulation})$

... similar to $\nu (\cos(2\phi) \mod 2\phi)$

- Zero or non-zero?
- Improve the present accuracy (yellow band, by SIDIS)
- Compare also with blue line, which takes into account scale evolution (Collins-Soper-Sterman evolution)

Eur. Phys. J. A39, 89 (2009)

まとめ

Purpose of E906/SeaQuest @ Fermilab

- $\,\triangleright\,$ Investigate the nucleon structure with the Drell-Yan process
- $\,\,\,^{arsigma}$ Measure the sea-quark flavor asymmetry, $ar{d}/ar{u}$
- $\triangleright \text{ Measure the Boer-Mulders function, } h_1^{\perp}(x,k_T)$
- \triangleright Measure the nuclear dependence, $\sigma_{p+A}/\sigma_{p+d}$
 - \triangleright Not only physics but also to limit the nuclear correction on $\overline{d}/\overline{u}$.
- First physics run (Run-2) has finished
 - Data analyses are on-going
 - Preliminary result has confirmed that the data are being accumulated as anticipated
- Second physics run (Run-3) will start in November 2014
- Future polarized Drell-Yan experiments at Fermilab, i.e. E-1027 & E-1039