Recent results with photons and jets at RHIC and sPHENIX upgrade including pre-shower detector

ShinIchi Esumi Inst. of Physics, Univ. of Tsukuba

- recent results with γ , jet
- sPHENIX upgrade
- pre-shower detector
- simulations

Enhanced thermal photon production at low p_T

- Virtual and real photon measurements via internal and external conversion methods with electron pair measurements
- Real photon measurements with EMcal
- Initial temperature of 300~600MeV

- comparable to hadron for both v_2 and v_3 at 2~3GeV/c
- significant contribution from photons from later stages (inconsistent with early photons from hotter period)
- flatter p_T dependence of v₂ at low p_T

Energy loss at high p_T and re-distribution of the lost-energy at low p_T at RHIC

Korea-Japan collaboration meeting, Riken, 28/Nov/2014

jet-suppression by partonic energy loss and/or modification of fragmentation function

DOE review of sPHENIX science, 1-2/July/2014 at BNL

- Jet measurements
- Upsilon program
- B-jet tagging

Major Instrumentation and Equipment (MIE) proposal to be updated by Nov/2014

Department of Energy sPHENIX Science Review EM+hadronic calorimetry ulletJamie Nagle (University of Colorado, Boulder) over $|\eta| < 1.1$ Re-use existing BaBar 1.5T solenoid Silicon tracking Pre-shower detector DAQ rate ~ 10 kHz

Years	Beam Species and Energies	Science Goals		New Systems Commissioned
2014	15 GeV Au+Au 200 GeV Au+Au	Heavy flavor flow, energy loss, thermalization, etc. Quarkonium studies QCD critical point search		Electron lenses 56 MHz SRF STAR HFT STAR MTD
2015-16	p+p at 200 GeV p+Au, d+Au, ³ He+Au at 200 GeV High statistics Au+Au	Extract η/s(T) + constrain initial quantum fluctuations More heavy flavor studies Sphaleron tests Transverse spin physics	en	PHENIX MPC-EX Coherent e-cooling test od of existing PHENIX detector
2017	No Run			Low energy e-cooling upgrade
2018-19	5-20 GeV Au+Au (BES-2)	Search for QCD critical point and o of deconfinement	onset	STAR ITPC upgrade Partial commissioning of sPHENIX (in 2019)
2020	No Run			Complete sPHENIX installation STAR forward upgrades
2021-22	Long 200 GeV Au+Au with upgraded detectors p+p, p/d+Au at 200 GeV	Jet, di-jet, γ-jet probes of parton transport and energy loss mechan Color screening for different quark	ism (onia	sPHENIX
2023-24	No Runs			Transition to eRHIC

Detector concept

- **Magnetic Solenoid** solenoid built for the BaBar experiment at SLAC which became available after the termination of the BaBar program. The cryostat has an inner radius of 140 cm and is 33 cm thick, and can produce a central field of 1.5 T.
- **Silicon Tracking** six layers of silicon tracking for charged track recontruction and momentum determination.
- **Electromagnetic Calorimeter** tungsten-scintillating fiber sampling calorimeter inside the magnet bore read out with silicon photo-multipliers. The calorimeter has a small Molière radius and short radiation length. allowing for a compact design.
- **Inner Hadronic Calorimeter** sampling calorimeter of non-magnetic metal and scintillator located inside the magnet bore.
- **Outer Hadronic Calorimeter** sampling calorimeter of steel scintillator located outside the cryostat which doubles as the flux return for the solenoid.

Larger Molière radius worse for HI collisions EMCAL can be Pb/Sc

Overall HCAL larger

Korea-Japan collaboration meeting, Riken, 28/Nov/2014

Smaller Molière radius better for HI collisions Thin HCAL section can be used for e/h separation Smaller overall HCAL

Pre-Shower detector proposal OUTER HCAL R259.5 CRYOSTAT-R173.0 INNER HCAL R140.0 **EMCAL** R113.5 R90.0 SILICON TRACKER pre-shower

Pre-Shower detector design parameters

Requirements

- (1) Direct photon identification above ~10GeV/c
- (2) π^0 identification up to ~40GeV/c

Detector parameters

- (a) ~25% azimuthal coverage of $|\eta|$ <1.1 (~3m² at R~0.88m)
- (b) one layer of Tungsten converter
 - (~2X₀ , ~7mm)
- (c) one layer of silicon pad-readout
 - (5x5 ~ 10x10cm² pad , 30 ~ 120k channels)
- (d) Occupancy ~ 3% in central 200GeV Au+Au

Photons and heavy quark jets

simulation

EM and Hadronic shower in Geant

Single particle and jet energy resolution

Reconstruction of jet energy distribution

simulation

Competition with underlying H.I. B.G.

$$A_{J} = \frac{P_{T,1} - P_{T,2}}{P_{T,1} + P_{T,2}}$$

Figure 1.18: (Left) Calculation in VNI parton cascade of dijet A_J with T = 0.35 GeV and $\alpha_s = 0.3$ compared to the CMS data [39]. (Right) Calculation for RHIC jet energies, $E_{T,1} > 20$ GeV, for a circular geometry of radius 5 fm of A_J for different values of α_s increasing to $\alpha_s = 0.6$ (red line) [86].

Length and time scale vs energy of probe

simulation

Di-jet (A₁) γ -jet (E_{Jet}/E_{γ})

simulation

Surface bias control parameters

Summary

- recent results with γ, jet at RHIC
- sPHENIX upgrade with pre-shower detector
- detector and physics simulations