3rd Japan-Korea PHENIX Collaboration Meeting RIKEN, Japan, 27-28 November 2014

Introduction to RAON & Detector Systems for Nuclear Physics

Byungsik Hong (Korea University)

<u>Outline</u>

- Plan for RAON and LAMPS in Korea
- Observables
- Status of R&D
- Summary

RAON

Beam Parameters of RAON

	Driver Linac				Post Acc.	Cyclotron
Particle	H⁺	O ⁺⁸	Xe ⁺⁵⁴	U ⁺⁷⁹	RI beam	proton
Beam energy (MeV/u)	600	320	251	200	18.5	70
Beam current (pµA)	660	78	11	8.3	_	1000
Power on target (kW)	>400	400	400	400	_	70

KOBRA

- Stage 1 (F0~F3): Production and separation of RIBs by inflight method with high-intensity stable ion beams from ECRs
- Experimental target at F3 (available space of 2~3 m): In-beam γ-ray spectroscopy, Symmetry energy & charged particle spectroscopy, etc.
- Stage 2 (F3~F5): Big-bite spectrometer with Wien filter

Target and Detection Systems for KOBRA

Supersonic gas-jet target

Target and Detection Systems for KOBRA

- Gamma array
 - 16X(4-fold 32 segmented Clover HPGe)
 - First half of full array: ~2018
 - Second half of full array: after 2019

Number of clovers	16 for full array		
Distance from target to detector surface	107.5 mm		
Angle coverage	85% for 4π		
Digital electronics	TIGRESS or GRETINA		

27 November 2014

3rd Japan-Korea PHENIX Meeting

Low-Energy LAMPS (LAMPS-L)

- Si-CsI Array
 - \checkmark Charged particles & $\gamma's$
 - $\checkmark \Delta E/E \sim 10^{-2}$
 - ✓ Particle ID

Scintillator Array

- ✓ Neutrons
- ✓ Acceptance=100~300 mSr
- $\checkmark \Delta E/E \sim 5.0 \times 10^{-2}$ via TOF

High-Energy LAMPS (LAMPS-H)

 Solenoid Spectrometer + Dipole Spectrometer + Neutron Detector Array

High-Energy LAMPS (LAMPS-H)

For the various Coulomb breakup experiments

Physics Topics/Observables to be Covered by LAMPS

- Low-energy LAMPS @ KOBRA in LE Expt. area
 - Nuclear symmetry energy @ sub-saturation density
 - Fusion reaction cross section
 - Dipole emission
 - Yield & the polar angle dependence
 - Intermediate-Mass Fragments
 - Charge equilibration/Isospin mixing/Neck fragmentation
- High-energy LAMPS @ HE Expt. area
 - Nuclear symmetry energy @ supra-saturation density
 - Ratio of mirror nuclei & π^-/π^+
 - Isospin diffusion parameter
 - Collective flow
 - Dipole emission
 - For example, peak position of GDR and yield of PDR

Dipole Emission in Fusion

C. Rizzo et al., PRC 83, 014604 (2011): SMF

 Collective dipole bremsstrahlung radiation during the charge equilibration process

➤ Relative position of CM's for n & p:

 $N_1/Z_1 \neq N_2/Z_2$

$$D(t) \equiv \frac{NZ}{A} \left[X_p(t) - X_n(t) \right]$$

• Photon emission probability with $E_{\gamma} = \hbar \omega$

$$\frac{dP}{dE_{\gamma}} = \frac{2e^2}{3\pi\hbar c^3 E_{\gamma}} \left(\frac{NZ}{A}\right)^2 \left|D^{''}(\omega)\right|^2$$

Similar effect in (ID)QMD model
 [Wu et al., PRC81, 047602 (2010)]

 \Rightarrow Larger E_{sym} at $\rho < \rho_0$ (Asy-soft) emits γ earlier with stronger θ asymmetry

- Radioactive nuclei: Virtual photon absorption followed by neutron emission or by gamma decay
- The strength increases with the isospin asymmetry

PDR and Symmetry Energy

Charge Equilibration

- Charge equilibration
 - In fusion, dipole oscillation is important
 - In deep inelastic coll., dipole oscillation is overdamped: Diffusion of charges

$$D(t) = D(0) \exp(-t/\tau_d)$$

$$\left(\tau_d \to E_{sym}\right)$$

- Degree of equilibration governed by contact time and symmetry energy
- Observable: N/Z of light charged particles emitted by PLF as a function of dissipated energy: $(N/Z)_{CP}$ vs. $E_{diss} \equiv E_{cm} - E_{kin}(PLF + TLF)$

Isospin Transport/Diffusion

asymmetric collision system A+B

140

1.16 1.10 1.04

0.59 0.54 0.48 0.43 0.38 0.32 0.27 0.21

Time Projection Chamber

- Simulation with triple GEM readout using Garfield++
 - Gas mixture: Ar 90%+CO₂ 10%, Voltage for each foil: 450 V
 - <Gain>~1.4X10⁶, <Drift velocity>~50 mm/µs
 - < Dispersion > after 60 cm (maximum drift distance) < 3 mm

Time Projection Chamber

Design of Prototype TPC

Prototype TPC-Pad Plane

- Hexagonal shape: 5 & 2.5 mm
- 500 μm gap between two pads
- Multi-layer PCB board
- 16 pin SMD type connectors

Prototype TPC-GEM

- Trapezoidal shape
- Thickness: 75 μm
- Area: 160X120 mm²
- Triple layers for each pad

Prototype TPC-Field Cage

 $1M\Omega$ resistor(0.1%)

- = 35 μ m thick and 2 mm wide Cu strips
- 500 μm gap between adjacent strips
- Mirror strips on the back
- 1 MΩ resistors with 0.1% var.
- TPC body: G10 + Aramid honeycomb

Prototype TPC-Assembly Cage installed Outer Field Cage installed Prototype TPC assen

Inner Field Cage installed

Prototype TPC assembled

3rd Japan-Korea PHENIX Meeting

Neutron Detector Array

- Construction of the real-size prototype detector and test with radiation sources
 - Dimension: 0.1X0.1X2.0 m³
 - Sources: ⁶⁰Co and ²⁵²Cf

LAMPS-H Neutron Array

Assembly of the real-size prototypes (2 m long)

LAMPS-H Neutron Array

<u>Summary</u>

- 1. RAON project
 - New opportunity will be in Korea for heavy-ion reactions with radioactive-ion beams.
 - First beam on target: ~2019 for LAMPS-L and ~2021 for LAMPS-H
- 2. KOBRA
 - Nuclear structure and astrophysics
- 3. LAMPS
 - Nuclear symmetry energy below and above ho_0
 - Low- and high-energy LAMPS setups to be constructed.