

Performance of the prototype neutron detector for low-energy LAMPS at RAON

<u>Jae Hee Yoo*</u>, Kyong Sei Lee, Byungsik Hong, Jung Keun Ahn, Bumgon Kim, Jae Beom Park

> Korea University Nuclear Physics Laboratory

1

contents

- 1. Introduction
- 2. Simulation result and experimental design
 - 132Sn+124Sn at 18.5-AMeV from PHITS
 - Prototype of neutron detector
- 3. Data analysis
 - TOF method
 - Noise filtering
- 4. Test results
 - Kinetic Energy spectrum
 - Time different between 2hits
- 5. Summary

Nuclear Physics Laboratory

Introduction

Large Acceptance Multi-Purpose Spectrometer(LAMPS) to study isospin-dependence of nuclear properties

Main purpose for Symmetry-Energy research

EOS & Symmetry energy

- n/p ratio
- Flow parameters for n and p

Physics Laboratory

Simulation result and experimental design

Simulation in low energy Lamps

132Sn+124Sn at 18.5-AMeV from PHITS in low-energy LAMPS experiment (J. B. Park, KU)

 The most probable and mean energies of the neutrons are 6.0 and 10.5 MeV, respectively.

Laboratory

Experimental Design of neutron detector

Preliminary Low-LAMPS design

- Basic structure of unit detector module
 : 3 x 3 array
- Size of unit detectors : 10 x 10 x 20 cm³

Experiment equipment			
Detector matter	Plastic-scintillator (Bicron model BC408)		
Neutron source	252		
Time of flight distance	1.5 m		
Discriminator	VTD, CAEN model N844		
PMT	VTD, CAEN model N844		
TDC	LeCroy model 2228A		
ADC	LeCroy model 2249A		
9			

Prototype neutron detector design

- Prototype detector module
 : Composed of 7 block detectors
- Size of unit detectors : 10 x 10 x 20 cm³

Physics Laboratory

Data analysis

TOF with 252Cf

٠

TDC

- Gamma and neutron are emit by californium 252 at fission decay.
- Gamma is used as reference of time.
- TOF method is used to calculate energy of neutron

Gamma, Neutron, Noise information

 Q_{tot} = total detector response of the radiation.

- Gamma peak centered at 5.05 ns
- Neutron time zone: 24 ~ 80 ns
- Mean noise rate per detector
 = 51.4 Hz
- Noise accidental hits in the neutron time zone in the broad band with a width of Qtot ranging from
 1 to about 12 pC
- The ratio of the accidentals in the neutron time zone = 0.089 ± 0.005 .

Neutron Separation

Noise filtering

true neutrons $\varepsilon = 94.5$ % with 75 % background rejection

Noise filtering

Nuclear Physics Laboratory

Test results

Laboratory

Kinetic Energy spectrum

Neutron-energy spectrum of ²⁵²Cf measured by the present prototype neutron-detector module.

(The dashed line stands for the systematic trend of the neutron yield.)

- Digitization threshold
 - : 300 keV
- 7 module block detector can detect over than 2 MeV neutron and detect exactly over 4.5 MeV neutron.
- Neutron energy confirmed with $\epsilon > 50 \%$ over 4 MeV.

Δt between 2hits

Time difference between the 1^{st} and 2^{nd} hits for the events by the γ (top) and by the n(bottom) emitted from the ²⁵²Cf decays.

Case of the fastest gamma hits

The second hits in the neutron time-region (20 ~ 80 ns) were produced by

- 1. One of the **fissile neutrons**
- 2. The fastest gamma hit.

Case of the fastest neutron hits

The maximum time difference between the two hits created

by a single neutron was about 20 ns.

1. We design the neutron detector array for the low-energy LAMPS experiment using PHITS for ¹³²Sn + ¹²⁴Sn at 18.5-AMeV.

2. Detector resolution function E/Q asymmetric cuts (-2σ to 4σ) for selecting true neutrons.
 (ε = 94.5 % with 75 % background rejection)

3. Neutron energy confirmed with $\varepsilon > 50$ % over 4 MeV.

4. The maximum time difference between the two hits created by a single neutron was about 20 ns.

Physics Laboratory

THANK YOU.

Physics Laboratory

BACK-UP

Neutron Hit Distribution

 Each detector's acceptance is pretty similar except for detector2.

Cluster Size

cluster timing(1st hit in center)

 There is no data which Ct>4ns

• (Cs > 1) Probability : 0.698%

before TWC

Cluster Size(Simulation)

CS	ratio between cs=1)
1	1
2	0.06296
3	0
Simulation	

Laboratory

2nd Hit distribution(Simulation)

Simulation

- 23865 neutron + accidental
- 20865 real neutron
- 21508 accidental cutting value
- 97.02% acceptance