Exploring gluon polarization in lower-x region

Yoon Inseok

Seoul National University / RIKEN IPA

-3rd Japan-Korea PHINEX Collaboration Meeting

2011.11.27

Contents

- Motivation of the measurement.
- Definition of $A_{LL}^{\pi^0}$ and its interpretation.
- PHENIX detector
- PHENIX longitudinal spin Runs
- Analysis Procedure
 - Low level study
 - Event selection study
- A_{LL} calculation
- $A_{LL}^{ZDC/BBC}$ measurement
- Preliminary Result
- Outlook

Motivation

- Spin sum rule: $\frac{1}{2} = \int_0^1 dx \left[\frac{1}{2} (\Delta q + \Delta \bar{q}) + \Delta g \right] + L_q + L_g$ Quark contribution 25~35% from DIS experiment.
- PP collision provide access to Δg at leading-order through g-g and g-q scattering.

Motivation

- Large uncertainty in low x range.
- To expand sensitivity to low x range,
 1. A^{π⁰}_{LL} measurement at √s = 510 GeV.
 2. A^{EM Cluster} measurement at forward-rapidities.

• Coverage $A_{LL}^{\pi^0}$ at $\sqrt{s} = 200 \text{ GeV} : 0.05 < x$ $A_{LL}^{\pi^0}$ at $\sqrt{s} = 510 \text{ GeV} : 0.02 < x$ forward $A_{LL}^{EM \ Cluster}$: 0.002 < x

Definition of $A_{LL}^{\pi^0}$ and its interpretation

• $\Delta \sigma = \Delta f_a \otimes \Delta f_b \otimes d\hat{\sigma}^{ab \to cX} \otimes D_{f_c}^h$ $d\hat{\sigma}^{ab \to cX} : \text{pQCD}, D_{f_c}^{\pi^0} : e^+e^- \text{ scattering}.$

Definition of $A_{LL}^{\pi^0}$ and its interpretation

- Validity test of factorization by unpolarized cross-section measurement.
- Theory calculation by factorization explains well experimental data.
- It's safe to use factorization to interpret $A_{LL}^{\pi^0}$.

PHENIX Detector Configuration

- EMCal : $|\eta| < 0.35$, $\Delta \phi = 2 \times \frac{\pi}{2}$
- ERT : high energy cluster trigger
 Different circuits are used for even and odd crossing.
 → Crossing separated analysis is needed.
- BBC : minbias trigger, primary lumi. detector. ZDC : secondary lumi. detector
- PC3 : to reject charged cluster.

PHENIX Longitudinal Spin Runs

Table 1. Summary of PHENIX Longitudinal Spin Runs.

Year	$\sqrt{s} \; (\text{GeV})$	L (pb^{-1})	P (%)	FoM (P^4L)
2003	200	3.5×10^{-1}	27	1.9×10^{-3}
2004	200	1.2×10^{-1}	40	3.1×10^{-3}
2005	200	3.4×10^0	49	2.0×10^{-1}
2006	200	7.5×10^0	57	7.9×10^{-1}
2006	62.4	8.0×10^{-2}	48	4.2×10^{-3}
2009	500	1.0×10^1	40	2.6×10^{-1}
2009	200	1.4×10^{1}	57	1.4×10^{0}
2011	500	1.7×10^1	48	8.8×10^{-1}
2012	510	3.0×10^1	52	2.2×10^0
2013	510	1.5×10^2	55	1.4×10^1

Run13 Spin Patterns

- 2 weeks : p1 ~ p8.
 Remaining weeks : p21 ~ p28
- After middle of Run13, crossing 38, 39, 78, and 79 are filled.
- 16 patterns can be sorted in 4 groups.

SOOSSOO	P1	P4	P5	$\mathbf{P8}$
OSSOOSS	P2	$\mathbf{P3}$	P6	$\mathbf{P7}$
SSOO	P21	P24	P25	P28
OOSS	P22	P23	P26	P27

Table 2.4: Sort of spinpattern

- p1 and p5 are symmetric under beam change.p1 and p4 are symmetric under parity inversion.
- Because of ghost clusters, analysis has been done 4 spin patterns separately.

Analysis Flow

- Low level study
 - EMCal tower-by-tower ToF correction.
 - EMCal warn map generation.
 - EMCal run-by-run energy correction.
- Event selection
 - Trigger requirement on event
 - : ERT4x4C&&BBCLL1 : P_T < 5GeV, ERT4x4A&&BBCLL1 : P_T > 5GeV.
 - Trigger requirement on π^0 : at least one triggered cluster.
 - $|ZVertex_{BBC}| < 30$ cm
 - Min. energy requirement > 300 MeV
 - -15ns<ToF<15ns (PbSc), -10ns<ToF<10ns.
 - prob_photon>0.02
 - Charge veto.

Analysis Flow - continue

- A_{LL} calculation.
- A_{LL}^{Peak} and A_{LL}^{Side} calculation.
- Background subtraction and $A_{LL}^{\pi^0}$.

• $A_{LL}^{ZDC/BBC}$ measurement.

- Check helicity dependence of luminosity detector.
- Pileup correction
- Width correction.
- Spin pattern correlation.
- A_L calculation.

EMCal Tower-by-Tower ToF Correction

- Tower-by-tower ToF shift is observed and the shift depends on time.
- We need to correct it to apply ToF cut.

EMCal Tower-by-Tower ToF Correction

- Uncorrected TOF = EMCal TOF(tower) BBC t0.
 Correted TOF = EMCal TOF(tower) BBC t0 Correction time(tower).
- Correction times : finding peak time of photons. (shower shape cut) Fill-by-fill correction : to remove time dependence of the shift.

EMCal Tower-by-Tower ToF Correction

• After the correction, EMCal ToF is well corrected for $A_{LL}^{\pi^0}$ analysis.

EMCal Warnmap Generation

- Map of hot, dead, uncalibrated, edge of sector, and neighbor of the bad towers.
- EM cluster spreads at least 3x3 towers. Thus EM hit neighbor tower leaks into the bad towers.
- Additional (non edge tower) 15% of EMCal towers are masked.

EMCal run-by-run Energy calibration

- Run-by-run EMCal gain shift is observed.
- EMCal run-by-run energy calibration has been done by π^0 peak position.
- The calibration has been done run-by-run and sector-by-sector.

Trigger Requirement

- For $P_T < 5GeV$, 4x4C For $P_T > 5GeV$, 4x4A.
- Trigger bit is required for at least one cluster to assure same trigger bias. $p + p \rightarrow \pi^{0} + X$ and π^{0} triggers ERT. $p + p \rightarrow \pi^{0} + C + X$ and C triggers ERT. (×) \therefore second π^{0} is from different bias.

Fill-by-Fill A_{LL} Calculation

•
$$A^{Peak(Side)}_{LL} = \frac{1}{P_B P_Y} \frac{N^{Peak(Side)}_{++} - RN^{Peak(Side)}_{+-}}{N^{Peak(Side)}_{++} + RN^{Peak(Side)}_{+-}},$$

 $R = \frac{\sum N^{BBC}_{++}}{\sum N^{BBC}_{+-}}.$ (pileup corrected, prescale+1 down)

•
$$N^{Peak}$$
: events $0.112GeV < M_{\gamma\gamma} < 0.162GeV$
 N^{Side} : events $0.047GeV < M_{\gamma\gamma} < 0.097GeV$ or $0.177GeV < M_{\gamma\gamma} < 0.227GeV$

Obtaining Run13 A_{LL}

- Constant fit to get Run13 A_{LL} .
- Spin pattern and crossing separated fitting has been done.
 - \therefore Spin pattern : ghost cluster.
 - Crossing : ERT property.

ALL_Total_Even_pt_2.0_2.5

Subtracting Background Contribution

• $A_{LL}^{\pi^0} = \frac{A_{LL}^{Peak} - rA_{LL}^{Side.}}{1-r}$, Where r is background fraction in peak region. BG subtraction : spinpattern and crossing separated.

• To get r, gaus+pol3 fitting has been done.

Pt bin	fraction.(%)
2-2.5	20.9777
2.5-3	15.6042
3-3.5	12.5159
3.5-4	10.9631
4-4.5	9.76821
4.5-5	9.73248
5-6	10.9942
6-7	9.73907
7-8	9.46908
8-9	9.75697
9-10	7.9014
10-12	6.72958
12-15	8.28725
15-20	9.1639

$A_{LL}^{ZDC/BBC}$ measurement

•
$$R = \frac{\sum N_{++}^{BBC}}{\sum N_{+-}^{BBC}}$$

- Need to check helicity dependence of luminosity detector.
 - \rightarrow Need to measure A_{LL} of luminosity detector, BBC30.
 - → Secondary luminosity detector is needed, ZDC30. BBC30 for luminosity, ZDC30 for event count. (vice versa.) $\rightarrow A_{LL}^{ZDC/BBC}$

• $A_{LL}^{ZDC/BBC}$ and its uncertainty are source of systematic uncertainty of any A_{LL} .

$A_{LL}^{ZDC/BBC}$ measurement

• $r(i) = c \times [1 + \epsilon_{LL} \times Pattern_{Blue} \times Pattern_{Yellow}]$, where $r(i) = \frac{ZDC \ 30(i)}{BBC \ 30(i)}$ $\rightarrow Single \ run \ A_{LL}^{ZDC/BBC} = \frac{\epsilon_{LL}}{P_B P_Y}$

Pileup Correction

• Luminosity can be miscounted by multiple or single-side collision.

• observed rate = $1 - e^{-true rate(1+k_n)} - e^{-true rate(1+k_s)} + e^{-true rate(1+k_n+k_s)}$ where,

$$k_{n(s)} = \frac{\epsilon_{n(s)}}{\epsilon_{ns}}$$

 ϵ_0 : no hit on both side detector.

 ϵ_n : exclusive hit on north side detector. ϵ_s : exclusive hit on south side detector. ϵ_{ns} : coin. hit on south side detector.

• k_n^{BBC} : 0.2256 k_s^{BBC} : 0.2256 k_n^{ZDC} : 3.838 k_s^{ZDC} : 4.037

Pileup Correction

- observed rate = $1 e^{-true rate(1+k_n)} e^{-true rate(1+k_s)} + e^{-true rate(1+k_n+k_s)}$
- BBC : undercount dominant at high rate. ZDC : overcount dominant at high rate.

Width Correction

- ZDC misses scaler counts because of poor resolution.
 For narrow vertex width, undercount dominant.
 For wide vertex width, "the scaler count missing" become weak.
 => ZDC/BBC ratio depends on the vertex width.
- To parametrize ZDC vertex width, $ZDC_{out} = ZDC_{wide} - ZDC_{narrow}$. ZDC vertex width $\sim \frac{ZDC_{out}}{ZDC_{narrow}}$
- Clear correlation between ZDC/BBC and ^{ZDC}_{out}/_{ZDC}_{narrow}.

$A_{LL}^{ZDC/BBC}$ measurement - Result

• $A_{LL}^{ZDC/BBC} = -6.5380 \times 10^{-5} \pm 7.7110 \times 10^{-5} (stat.) \pm 7.9559 \times 10^{-4} (pattern) \pm 8.1354 \times 10^{-6} (correction.)$

•
$$\delta A_{LL}^{ZDC/BBC}(stat.) = \sqrt{\chi_{reduced}^2} \times fitting uncertainty.$$

• $\delta A_{LL}^{ZDC/BBC}$ (*corection*.) from varying correction parameters.

$A_{LL}^{ZDC/BBC}$ measurement - Result

• Weighted average of absolute value of deviation.

$$\delta A_{LL}^{ZDC/BBC}(pattern) = \frac{\sum w_i |A_{LL}(pattern) - A_{LL}|}{\sum w_i}, \text{ where } w_i = 1/\delta A_{LL}(pattern, stat.)$$
$$= 7.956 \times 10^{-4}$$

•
$$\delta A_{LL}^{\pi^0}(RelLumi) = 8.020 \times 10^{-4}$$

• Parity invariant strong interaction should gives zero $A_L^{\pi^0}$. Good tool of testing validity of the analysis.

• Measured $A_L^{\pi^0}$ show zero asymmetry within uncertainty.

Preliminary Result

- Non-zero A_{LL} is measured.
- Confirmed by 3 analyzers.

Preliminary Result

- 510GeV A_{LL} approaches two times smaller x_T . \rightarrow Significant contribution on global analysis expected.
- 510 GeV A_{LL} is larger. : Q^2 evolution?

Outlook

- Current uncertainty estimation : very conservative.
 - \rightarrow Uncertainty could be reduced in final result.
 - Prescale effect : stat. uncertainty \downarrow .
 - Using ERT4x4B : stat. uncertainty at high $P_T \downarrow$.
 - Residual rate correction : spin pattern correlated $A_{LL}^{ZDC/BBC} \downarrow$.
- Removing analysis dependent P_T correlated syst. : urgent!

Summary

- Preliminary $A_{LL}^{\pi^0}$ at $\sqrt{s} = 510$ GeV measurement has been done and released.
- $A_{LL}^{\pi^0}$ at $\sqrt{s} = 510$ GeV : two-times smaller x_T , larger A_{LL} .
- Pushing for final result and publication!

BackUp

EMCal Warnmap Generation – finding hot towers

EMCal Warmap Generation – finding dead towers

- ERT broken towers are still useful for π^0 reconstruction.
- ERT independent trigger is needed. minbias.

Hits per tower in sector_0 for Ebin=03 Minbias

Shower shape Cuts

- To reduce background from hadronic event.
- Compare measured shower shape with shower of electron beam by calculating $\chi^2 = \sum_i (E_i^{elec} E_i^{meas})^2 / \sigma_i^2$
- Conventional 2% cut is applied. (= Level of killing 2% of real EM)

ToF Cuts

- -15ns<ToF<15ns for PbSc, -10ns<ToF<10ns for PbGl.
- To reduce background from ghost cluster.
- Ghost cluster : cluster from previous bunch crossing.
 Cluster in EMCal can remain up to 3 bunch crossing.
 → Source of background.
- Ghost cluster can make different background for different spin patterns. \rightarrow Systematic difference of A_{LL} of different spin pattern has been observed.
- Ghost cluster can't associate BBC T0 and wider ToF distribution. Thus ghost cluster can be rejected by ToF cuts.
- Pattern separated analysis has been done.

Charge Veto Cuts

- To reject charged hadrons.
- (a) : photons that convert outside of the magnetic field prior to the EMCal, and have very small θ_{cv}
 - (b) : charged hadrons that bend in the magnetic field, and so have moderate sized θ_{cv} .
 - (c) : photons that do not convert, and are randomly associated with a different particle's PC3 hit.

EMCal run-by-run Energy calibration

- Moderate θ_{cv} region is cut.
- Cut parameters are optimized by maximizing FoM.

