Correlated-basis approach to nuclear five- and six-body problems

The 185th RIBF Nuclear Physics Seminar 2014.11.25

Wataru Horiuchi (Hokkaido Univ., Japan)

Variational calculation for many-body quantum system

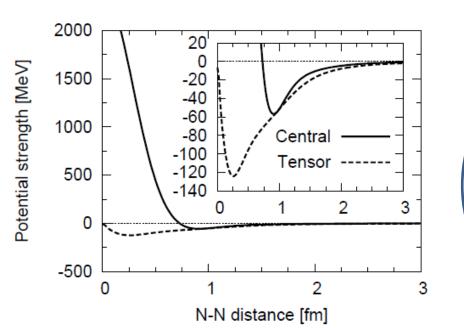
- Many-body wave function Ψ has all information of the nucleon dynamics
- Solve many-body Schoedinger equation
 ⇔ Eigenvalue problem with Hamiltonian matrix
 HΨ = EΨ
- Variational principle $\langle \Psi | H | \Psi \rangle = E \ge E_0$ ("Exact" energy) (Equal holds if Ψ is the "exact" solution)
- Contents of my talk
 - Correlated-basis approach to few-body quantum physics
 - Example: Ab initio calculation for ⁴He
 - ¹²C+4N five-body calculations: Cluster and shell competition
 - Semi-microscopic
 - Valence nucleon can occupy any orbit except the occupied orbits in the core nucleus
 - Six-body calculation for ⁶He: Halo and clustering
 - Fully microscopic

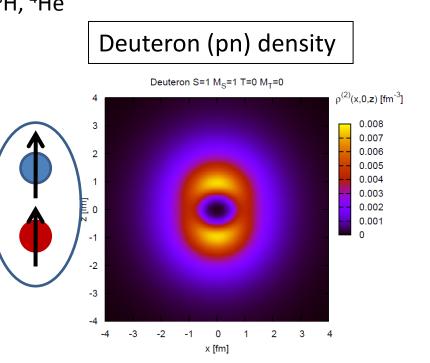
Hamiltonian and nuclear forces

Hamiltonian

$$H = \sum_{i=1}^{A} T_i - T_{cm} + \sum_{i < j}^{A} v_{ij} + \sum_{i < j < k}^{A} v_{ijk}$$
$$v_{12} = V_c(r) + V_{Coul.}(r) P_{1\pi} P_{2\pi} + V_t(r) S_{12} + V_b(r) L$$

- Argonne v8 type interactions (AV8', G3RS); "bare" interaction central, tensor, spin-orbit
- Three-nucleon force (3NF) E. \rightarrow reproduce binding energies of ³H, ⁴He





E. Hiyama et al. PRC70, 031001(R) (2002)

 $\cdot S$

Hamiltonian and nuclear forces

Hamiltonian

$$H = \sum_{i=1}^{A} T_i - T_{cm} + \sum_{i < j}^{A} v_{ij} + \sum_{i < j < k}^{A} v_{ijk}$$
$$v_{12} = V_c(r) + V_{Coul.}(r) P_{1\pi} P_{2\pi} + V_t(r) S_{12} + V_b(r) L \cdot S$$

- Argonne v8 type interactions (AV8', G3RS); "bare" interaction central, tensor, spin-orbit
- Three-nucleon force (3NF) E. Hiyama et al. PRC70, 031001(R) (2002) \rightarrow reproduce binding energies of ³H, ⁴He, inelastic form factor of ⁴He

Basis function

$$\Psi_{(LS)JM_JTM_T} = \mathcal{A}\left\{ \left[\psi_L^{(\text{space})} \psi_S^{(\text{spin})} \right]_{JM_J} \psi_{TM_T}^{(\text{isospin})} \right\}$$
$$\psi_{SM_S}^{(\text{spin})} = \left| \left[\cdots \left[\left[\left[\frac{1}{2} \frac{1}{2} \right]_{S_{12}} \frac{1}{2} \right]_{S_{123}} \right] \cdots \right]_{SM_S} \right\rangle$$

 $\psi_{LM}^{(\mathrm{space})}$: correlated Gaussian combined with two global vectors

Y. Suzuki, W.H., M. Orabi, K. Arai, FBS42, 33-72 (2008)

$$F_{(L_1L_2)LM}(u_1, u_2, A, x) = \exp\left(-\frac{1}{2}\widetilde{x}Ax\right) \left[\mathcal{Y}_{L_1}(\widetilde{u_1}x)\mathcal{Y}_{L_2}(\widetilde{u_2}x)\right]_{LM}$$

Explicitly correlated basis approach

Correlated Gaussian with two global vectors

Y. Suzuki, W.H., M. Orabi, K. Arai, FBS42, 33-72 (2008)

 $\phi_{(L_1L_2)LM_L}^{\pi}(A, u_1, u_2) = \exp(-\tilde{\boldsymbol{x}}A\boldsymbol{x})[\mathcal{Y}_{L_1}(\tilde{u}_1\boldsymbol{x})\mathcal{Y}_{L_2}(\tilde{u}_2\boldsymbol{x})]_{LM_L}$ $\mathcal{Y}_{\ell}(\boldsymbol{r}) = r^{\ell} Y_{\ell}(\hat{\boldsymbol{r}})$

x: any relative coordinates (cf. Jacobi)

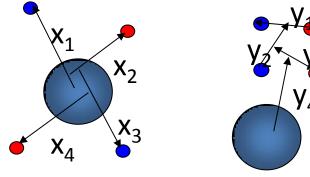
 $\tilde{x}Ax = \sum_{i,i=1}^{N-1} A_{ij}x_i \cdot x_j$ $\tilde{u}_i x = \sum_{k=1}^{N-1} (u_i)_k x_k$

Formulation for N-particle system Analytical expression for matrix elements

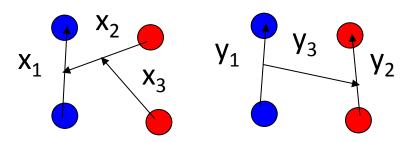
Functional form does not change under any coordinate transformation

 $\widetilde{v} \boldsymbol{y} = \widetilde{\widetilde{T} v} \boldsymbol{x}$ $y = Tx \implies \widetilde{y}By = \widetilde{x}\widetilde{T}BTx$

Shell and cluster structure



Rearrangement channels



See Recent Review: J. Mitroy et al., Rev. Mod. Phys. 85, 693 (2013)

Basis optimization: Stochastic Variational Method

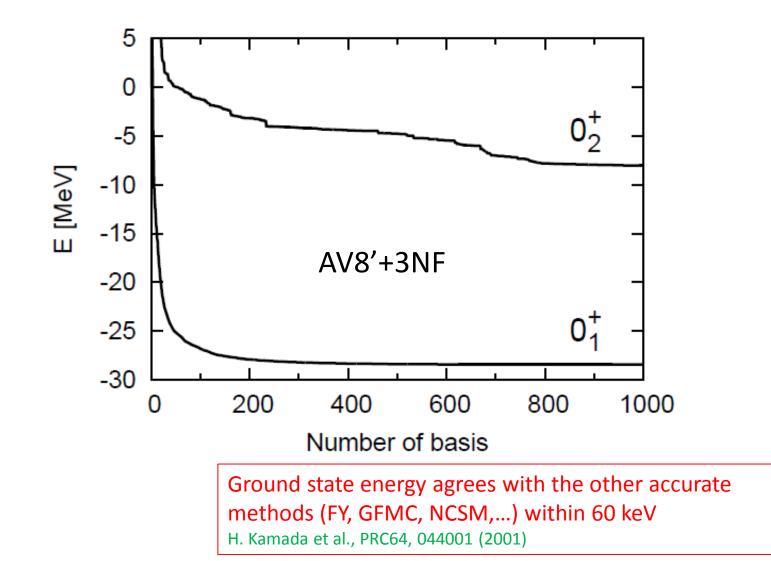
Possibility of the stochastic optimization

- 1. increase the basis dimension one by one
- 2. set up an optimal basis by trial and error procedures
- 3. fine tune the chosen parameters until convergence
 - **1.** Generate $(A_k^1, A_k^2, \dots, A_k^m)$ randomly
 - **2.** Get the eigenvalues $(E_k^1, E_k^2, \dots, E_k^m)$
 - **3.** Select A_k^n corresponding to the lowest E_k^n and **Include** it in a basis set

 $4. \quad k \rightarrow k+1$

Y. Suzuki and K. Varga, Stochastic variational approach to quantummechanical few-body problems, LNP 54 (Springer, 1998). K. Varga and Y. Suzuki, Phys. Rev. C52, 2885 (1995).

Energy convergence of ⁴He



Application to photonuclear reaction

WH, Y. Suzuki, PRC85, 054002 (2012)

Photoabsorption cross section

$$\sigma_{\gamma}(E_{\gamma}) = \frac{4\pi^2}{\hbar c} E_{\gamma} \frac{1}{3} S(E_{\gamma})$$

S(E_v): E1 strength function

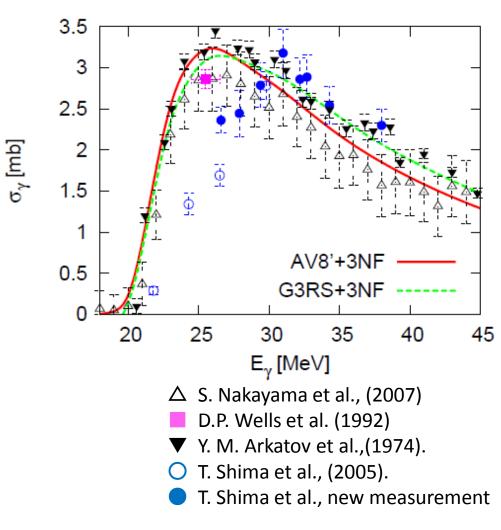
The continuum $J^{\pi}T=1^{-1}$ state is expanded in several thousand of basis states including explicit decay to two- and three-body channels.

Complex scaling method: Rotation in complex plane

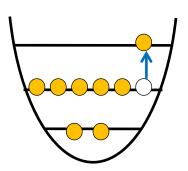
$$oldsymbol{r}_j
ightarrow oldsymbol{r}_j e^{i heta}, \quad oldsymbol{p}_j
ightarrow oldsymbol{p}_j e^{-i heta}$$

→ outgoing-wave B.C.
 Unifying bound and continuum states

Comparison with the measurements \rightarrow good agreement above 30 MeV



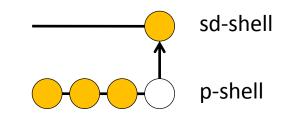
Motivation: Coexistence of two aspects

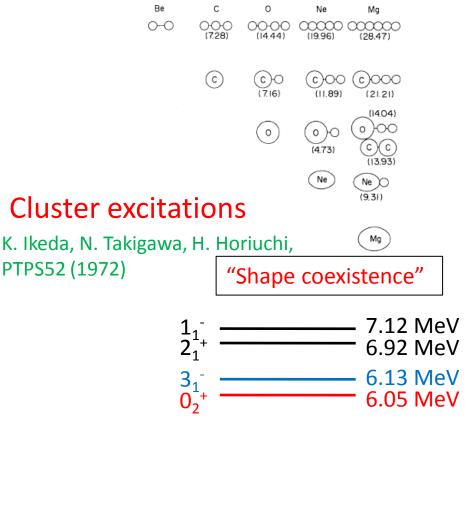


Particle-hole excitations

Mysterious 0⁺ state in ¹⁶O

- Simple 1p-1h negative parity?
- First excited state -> 0⁺





Low energy spectrum of ¹⁶O

Difficult to reproduce them even in modern large scale calculations

0₁⁺ — G.S.

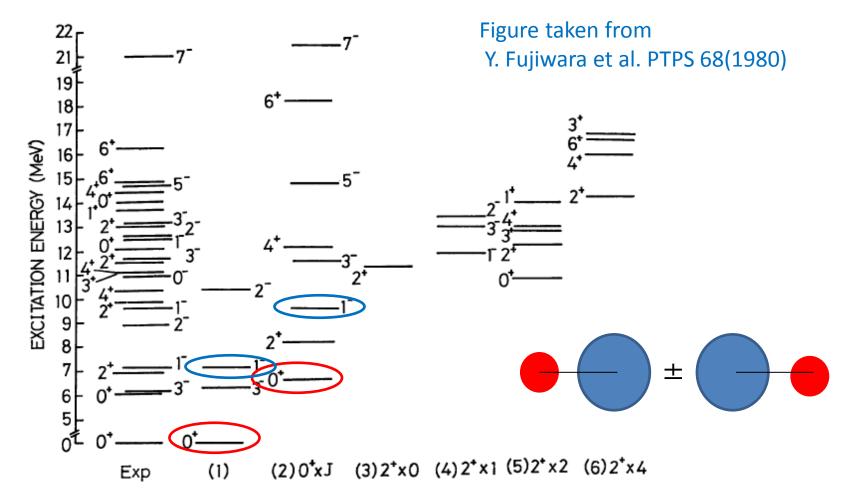
Theoretical works for the 0₂⁺ state

- Status of the state-of-art theoretical models
 - No core shell-model
 - P. Maris, J.P. Vary, and A.M. Shirokov, Phys. Rev. C79, 014308 (2009).
 - Coupled-cluster theory
 - M. Wloch et al., Phys. Rev. Lett. 94, 212501 (2005)
 - The energy of the state is too high
 - Not converged even more than 4p-4h conf.
- Beyond the mean field approach
 - Configuration mixing of Slater determinants
 - M. Bender, P.-H Heenen, Nucl. Phys. A713, 390 (2003)
 - The energy is well reproduced, 4p-4h conf. is small
 - S. Shinohara et al., Phys. Rev. C74, 054315 (2006)
 - The energy is too high, 15-17 MeV

Low-lying spectra of ${}^{16}O:{}^{12}C+\alpha$ picture

¹²C+ α model: coupled channel OCM Y. Suzuki, PTP55 (1976) 1751.

 \rightarrow Levels are reproduced very well including 0₂⁺



Towards resolving the ¹⁶O problem

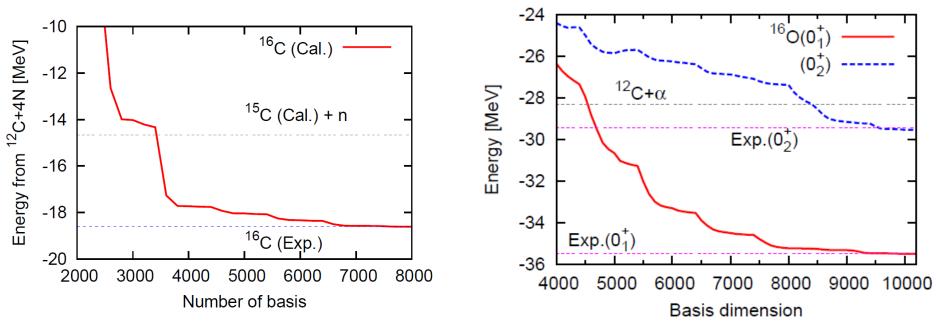
¹²C+p+p+n+n five body model

$$\begin{split} \text{Hamiltonian} \quad H &= \sum_{i=1}^{N} T_i - T_{\text{cm}} + \sum_{i=1}^{N-1} U_i + \sum_{i < j} v_{ij} + \sum_{i=1}^{N-1} \Gamma_i \\ \\ \underline{\text{N-N potential}} \quad v_{ij} &= v_c + v_{\text{Coul}}.P_{i\pi}P_{j\pi} \quad \text{Minnesota force} \\ \\ \underline{\text{N-12C potential}} \quad U_i &= U_c + U_{\text{Coul}}.P_{i\pi} + U_b \boldsymbol{\ell}_i \cdot \boldsymbol{s}_i \\ \\ \text{Woods-Saxon form, reproduce the levels 1/2-, 1/2+, 5/2+ of 13C} \\ \\ \underline{\text{Pauli constraint}} \quad & \text{HO 0s1/2 and 0p3/2} \\ \\ \Gamma_i &= \lambda \sum_{jm} |f_{jm}(i)\rangle \langle f_{jm}(i)|, \quad \lambda \to \infty \\ \\ \\ \text{Kukulin and Pomerantsev (1978)} \end{split}$$

- Four particles can occupy any states except for the occupied orbits in the core
- No assumption of alpha cluster nor shell model conf.

Basis function
$$\Phi = \mathcal{A} \left\{ \begin{bmatrix} \psi_L^{(\text{space})} \psi_S^{(\text{spin})} \end{bmatrix}_{\mathcal{J}} \phi_I(^{12}\text{C}) \end{bmatrix}_{JM} \psi_{TM_T}^{(\text{isospin})} \right\}$$
No core excitation (I=0)
$$\psi_{SM_S}^{(\text{spin})} = \begin{bmatrix} \cdots \begin{bmatrix} \begin{bmatrix} \frac{1}{2} \frac{1}{2} \end{bmatrix}_{S_{12}} \frac{1}{2} \end{bmatrix}_{S_{123}} \cdots \end{bmatrix}_{SM_S} \rangle$$

Energy curves of ¹⁶C and ¹⁶O



- ¹⁶C: converged (7000 basis states)
 - Good agreement with experiment
- ¹⁶O: converged at around 10000 basis states
 Discretizing on grids → Variational parameters D~N¹⁰⁺⁴⁺⁴×3×2
 N=4, D~4×10¹¹
 - Energies of the ground and first excited states are reproduced very well

Expectation values of Hamiltonian terms

	${}^{16}C(0_1^+)$	$^{16}O(0_1^+)$	$^{16}O(0_2^+)$	α
E	-18.47	-35.47	-29.52	-28.30
$E_{\text{exp.}}$	-18.59	-35.46	-29.41	-28.30
$\langle T_{cv} \rangle$	17.81	11.55	7.16	—
$\langle V_{cv} \rangle$	-82.49	-79.55	-29.22	_
$\langle T_v \rangle$	53.53	72.93	67.46	56.92
$\langle V_v \rangle$	-7.32	-40.41	-74.92	-85.22

N-N potential

Core-N potential

 $U_i = U_c + U_{\text{Coul}} P_{i\pi} + U_b \ell_i \cdot s_i$

- ¹⁶C: shell model like state
- $v_{ij} = v_c + v_{\text{Coul.}} P_{i\pi} P_{j\pi}$ ¹⁶O (0₁⁺): coexistence of shell and cluster states - α cluster is strongly distorted $\rightarrow \langle V_{v} \rangle \sim 1/2$ of free α
 - ${}^{16}O(0_2^+)$: well developed $\alpha + {}^{12}C$ cluster $<V_{y}>^{16}O(0_{2}^{+})\sim <V_{y}>^{4}He$ $\sim < V_{cv} > {}^{16}O(0_1^+)$
 - Balance of Core-N and N-N interactions

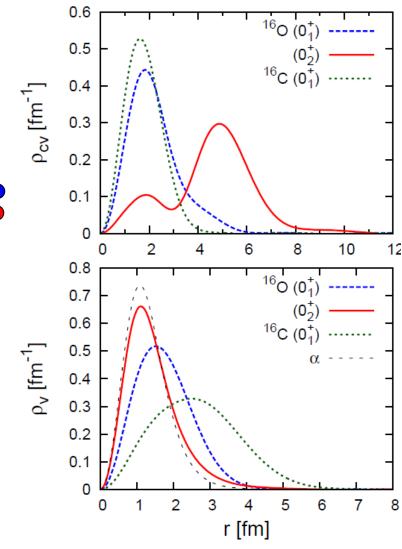
Density distributions of ¹²C-4N and 4N

- ¹⁶C: weak NN interaction
 - Shell model like states
 - Delocalized 4N density
- ¹⁶O: strong NN interaction
 - 0_1^+ : Shell and 4N correlation
 - 0_2^+ : Strong 4N correlation
 - Second peak far from the core Peak at ¹²C+α touching distance ~4.9 fm
 - Similar 4N density distribution to that of ⁴He

Rms distance between ¹²C and 4N and radius of 4N system

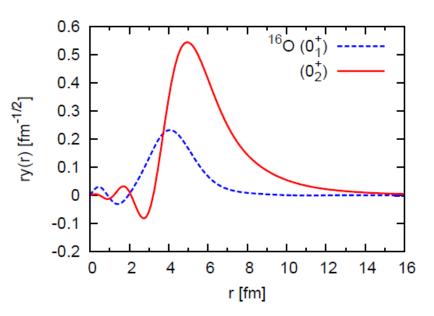
	${}^{16}C(0_1^+)$	$^{16}O(0_1^+)$	${}^{16}O(0_2^+)$	α
$\sqrt{\langle r_{cv}^2 \rangle}$	1.94	2.54	4.86	_
$\sqrt{\langle r_v^2 \rangle}$	2.88	1.90	1.62	1.43

Density distributions between ¹²C and 4N system

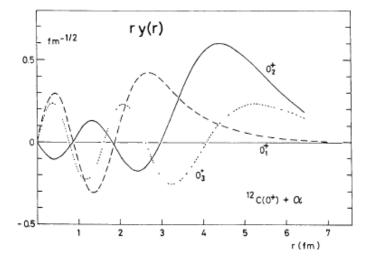


Density distributions of 4N system from their CM

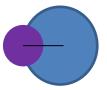
¹²C+ α spectroscopic amplitude y(r)=<¹²C+ α |¹⁶O>

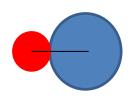


¹²C+α OCM: Y. Suzuki, PTP56 (1976) 111



- 0₁⁺: Alpha cluster is strongly distorted by the core nucleus
- 0_2^+ : Large amplitude beyond the touching distance of ${}^{12}C+\alpha$ (~4.9 fm)
 - Very long tail that characterizes the cluster structure
- Spectroscopic factor
 - 0₁⁺: 0.105 (OCM: 0.300) 0₂⁺: 0.680 (OCM: 0.679)





Distribution of harmonic oscillator quanta

Components of the harmonic oscillator quanta Q in the A=16 wave functions

Oscillator frequency is set to be the same as the occupied (forbidden) states in ¹²C

80 ¹⁶C: Q \geq 6 ¹⁶C (0⁺) ¹⁶0 Shell model state: four neutrons in 60 p and sd shells Average: $M_0 = 7.0$ 40 Standard deviation: σ_0 =2.1 Probability [%] 20 ¹⁶O: Q≧4 0₁⁺: Shell model or intermediate 0 state between shell and cluster. 10 20 30 0 10 20 30 0 15 $M_0 = 5.5$ σ₀=2.9 (0^{-1}) 10 0₂⁺: Cluster state Peak : 10-12 hw 5 2-4 hw larger than 4p-4h conf. M₀=14.3 0 σ₀=8.3 10 20 30 40 50 60 0 C

Difficult to describe it with the conventional shell model truncation

Monte Carlo, symmetry adaption, importance truncation, etc.

Summary I

- ¹⁶O: a ¹²C+n+n+p+p five body model
 - No assumption of alpha cluster
 - Energies of 0_1^+ , 0_2^+ states in ¹⁶O are reproduced well
 - Shell model (delocalized) and cluster structure in A=16 systems
 - 0_1^+ , 0_2^+ : balance of N-¹²C and N-N potentials
 - Two different types of structure coexist in the spectrum of ¹⁶O
 - Well developed ${}^{12}C+\alpha$ cluster in the first excited states of ${}^{16}O$
 - Density distributions
 - Spectroscopic amplitude (long tail, large α -width)
 - Large major shell mixing in the cluster state

WH and Y. Suzuki, PRC89, 011304(R) (2014)

• Correlated Gaussian with global vectors: Both the shell model like and cluster states can be described in a single scheme

Electric dipole response of halo nuclei

Exploring new phenomena in unstable nuclei
 Halo nucleus: typical examples ¹¹Li, ⁶He, ¹⁴Be, ²²C,...

I. Tanihata et al. PRL55, 2676; PLB160, 380; PLB206, 592 (1985) K. Tanaka et al. PRL104, 062701 (2010)

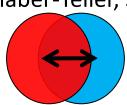
Small binding energy ⇔ Large matter radius

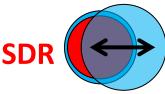
- Soft dipole resonance (SDR) or Pigmy dipole resonance (PDR)
 - Possible new mode in neutron rich unstable nuclei
 - Vibration of valence nucleons against the core

A variant of the macroscopic picture of giant dipole resonance (GDR)

- Goldhaber-Teller, Steinwedel-Jensen models

GDF





P.G. Hansen and B. Jonson, Europhys. Lett. 4, 409 (1987) K. Ikeda, INS Report No. (1988) (in Japanese) Y. Suzuki, K. Ikeda, and H. Sato PTP83, 180 (1990).

Purpose of this work

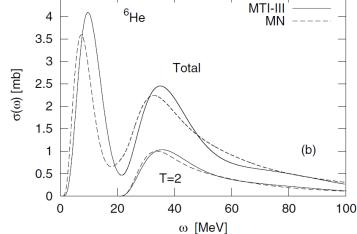
- Study electric dipole (E1) response of ⁶He Energy region: from SDR to GDR
 - Possible excitation modes?
 - Core excitation?
 - $\Leftrightarrow \alpha + n + n$ three-body model

Two phase equivalent potentials gives the different results T. Myo et al,. PRC63, 054313 (2001), D. Baye et al., PRC79, 024607 (2009) E.C. Pinilla, NPA865, 43 (2011)

→Fully microscopic six-body calculation

- Theoretical indication of SDR
 - S. Bacca et al. PRL89, 052502 (2001) EIHH+LIT

Two peak structure is found



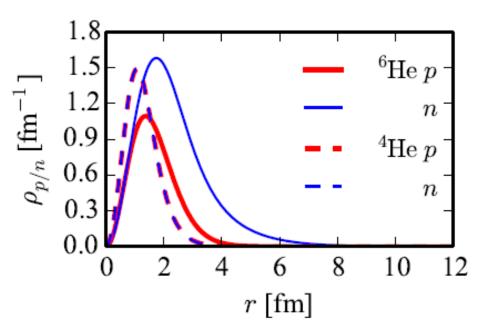
Ground state properties of ⁶He

$$H = \sum_{i=1}^{N} T_i - T_{\rm cm} + \sum_{i < j} v_{ij}$$

Free of spurious c.m. motion v_{ij} : Minnesota potential (u=1.05) -20 -22 -24 -24 -26 -28 -30 -32 0 100 200 300 400 500 600 Number of bases

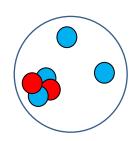
> Converged only with 600 basis states Note: 15 parameters on each basis E= -30.98 MeV (Expt. -29.27 MeV) S_{2n}= 1.01 MeV (Expt. 0.974 MeV)

Density distributions \rightarrow "Neutron halo"

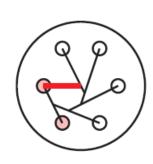


r_m: 2.41(Expt. 2.37 (10)) fm r_p : 1.83 (Expt. 1.87(1)) fm

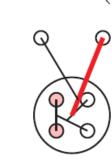
r_{pp}: 2.49 fm > 2.37 (⁴He) fm 5% of core swelling

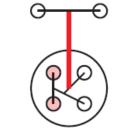


Configurations for the final state

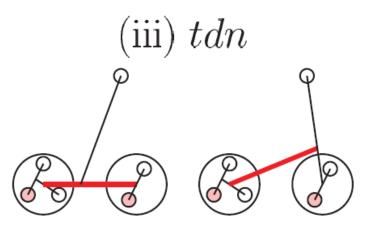


sp





 αnn



Correlated Gaussian + global vector

$$F_{LM_L}(v, A, \boldsymbol{x}) = \exp\left(-\frac{1}{2}\tilde{\boldsymbol{x}}A\boldsymbol{x}\right)\mathcal{Y}_{LM_L}(\tilde{v}\boldsymbol{x})$$
$$\tilde{\boldsymbol{x}}A\boldsymbol{x} = \sum_{i,j=1}^{N-1} A_{ij}\boldsymbol{x}_i \cdot \boldsymbol{x}_j \quad \tilde{v}\boldsymbol{x} (=\sum_{i=1}^{N-1} v_i\boldsymbol{x}_i)$$

W.H, Y. Suzuki, K. Arai, PRC85, 054002 (2012)

E1 operator

$$\mathcal{M}_{1\mu} = e \sum_{i \in p} (\boldsymbol{r}_i - \boldsymbol{x}_6)_{\mu} = \sqrt{\frac{4\pi}{3}} e \sum_{i \in p} \mathcal{Y}_{1\mu}(\boldsymbol{r}_i - \boldsymbol{x}_6)$$

(i)Single particle excitations $M_{1\mu}(E1)\Psi_i(^6\text{He})$ "Coherent E1 state" Well account for the E1 sumrule 600 basis states

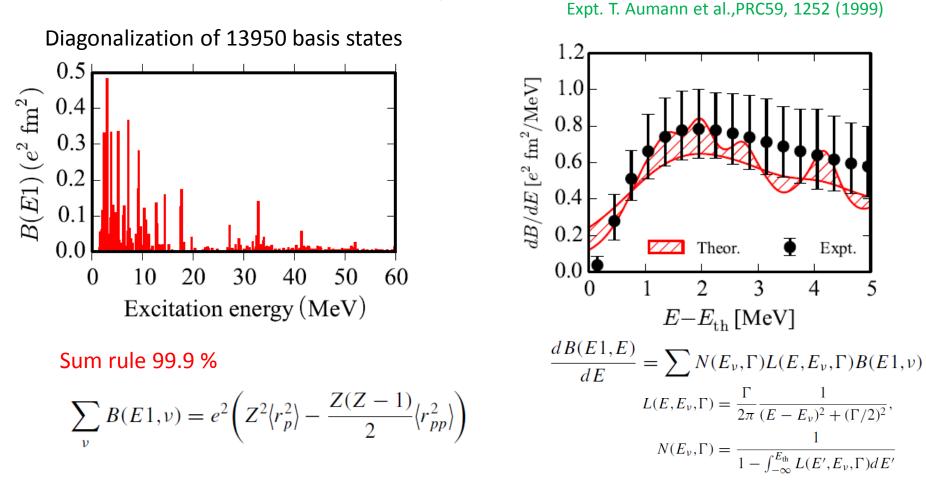
(ii)α+n+n disintegration Ψ_i(⁴He)χ(R, r) SDR configuration 8100 basis states

(iii)t+d+n three-body disintegration

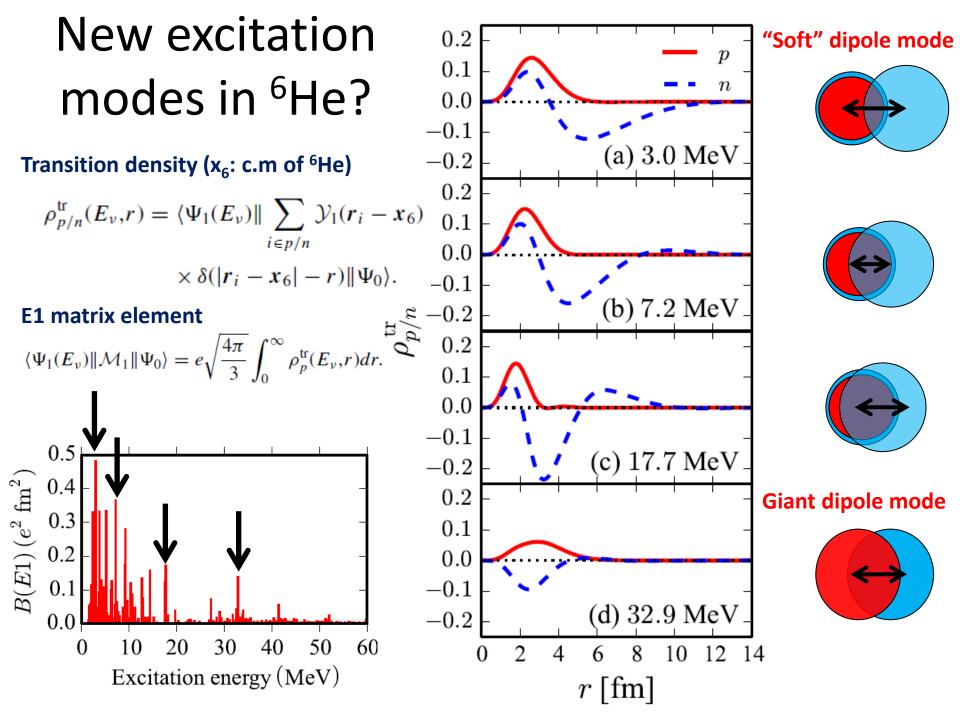
 $Ψ_i(^3H)Ψ_j(^2H)\chi(R, r)$ GDR configuration 5250 basis states

Electric dipole strength function

Reduced E1 strength $B(E1,\nu) = \sum_{M\mu} |\langle \Psi_{1M}(E_{\nu}) | \mathcal{M}_{1\mu} | \Psi_0 \rangle|^2$

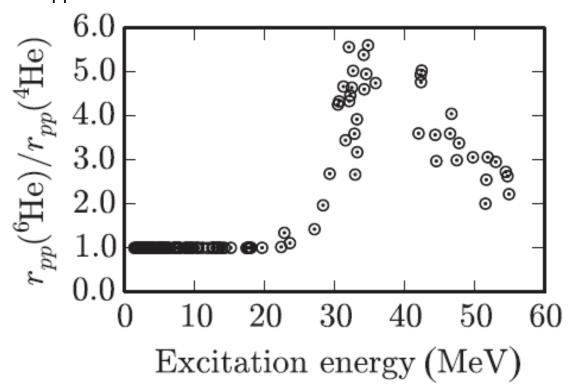


Γ = 0.75 to 2.0 MeV



Core excitations in ⁶He

Ratio of r_{pp} of ⁶He and ⁴He \rightarrow Validity of three-body model

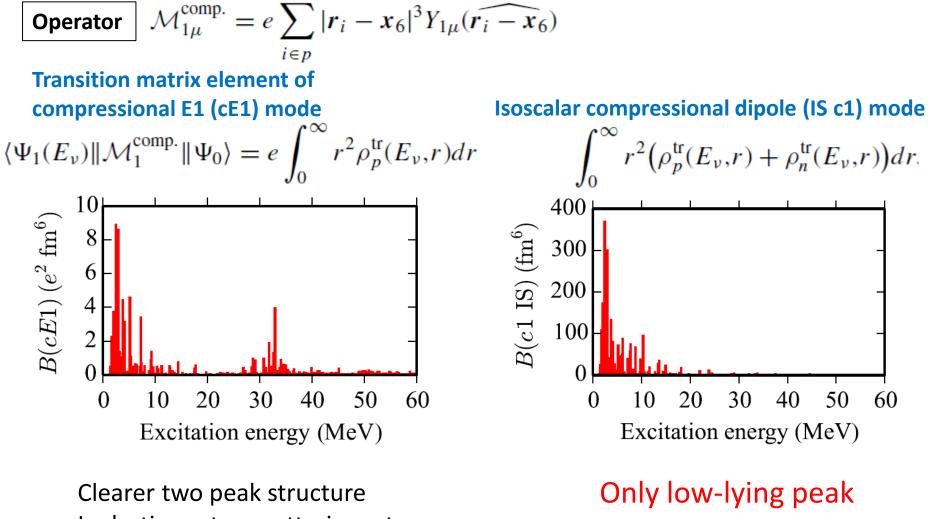


• The ratio is unity up to 20 MeV

No core swelling in the excited state of ⁶He (Note: 5% in the g.s)

- \rightarrow Three-body model for the excited state is valid up to 20 MeV
- Large core distortion in the GDR region

Compressional dipole modes



Inelastic proton scattering, etc.

Inelastic α scattering

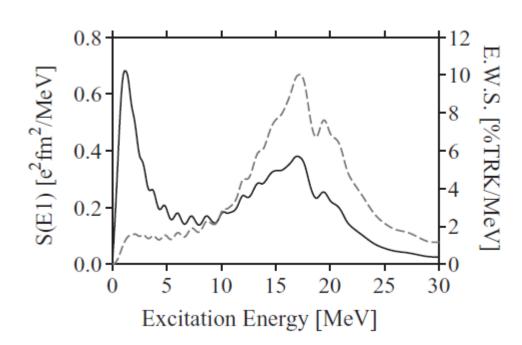
Summary II

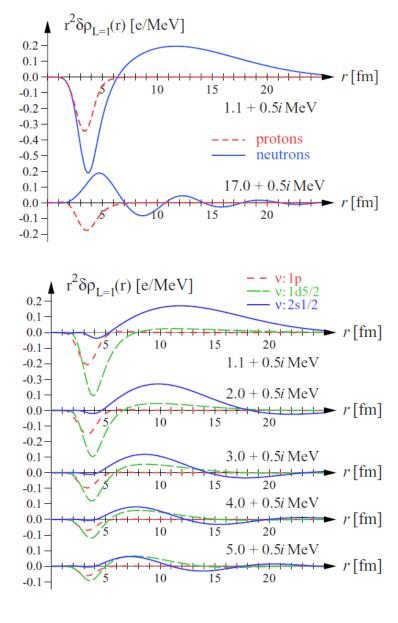
- A fully microscopic six-body calculation for the electric dipole response of ⁶He D. Mikami, WH, Y. Suzuki, Phys. Rev. C 89, 046303 (2014)
 - Explicitly correlated Gaussians
 - Final state interactions
 - Single-particle excitations
 - Three-body disintegrations
- Two-peak structure is found in the E1 strength
 - Low-energy peak: Soft dipole resonance (SDR)
 - High-energy peak: Giant dipole mode
 New mode: Vibrational excitation of SDR
 - SDR is more disclosed by the isoscalar compressional dipole mode
 <u>α inelastic scattering measurement</u>

²²C case

T. Inakura, W.H., Y. Suzuki, T. Nakatsukasa, PRC89, 064316 (2014)

- Skyrme-Hartree-Fock + RPA on 3D coordinate space
- Fermi level -0.5 MeV (modified SIII)
- "Pigmy is taller than Giant"





Importance of core excitation

Summary

- Explicitly correlated Gaussian with global vectors is powerful method to describe complex nuclear many body problems
 - Formulation of N particle system
 - No change of functional form by any coordinate transformation
- Outlook: Possible applications
 - More particle systems (A=6, 7,...)
 - Heavier core plus N-nucleon systems
 - Exotic nucleus (Hyper nucleus, ...)
 - Atomic and molecule systems