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  Abstract:  The very basic and simplest description of nuclear many-body systems is the  
(self-consistent) mean-field approximation to the many-body problem.  In particular, shape is  
the property of mean field.  Thus, if some nuclei show the specific feature of axially-symmetric  
quadrupole deformation, it is most convenient to start with the mean field, which has the same  
symmetry.  In order to obtain shape and size of deformation, on which Jahn-Teller effect (JTE)  
says nothing, shell-structure of one-particle spectra in deformed potentials must be studied.  The  
study has been developed uniquely and extensively in nuclear physics. 
  For simplicity, taking phenomenological one-body potentials which are well applied to observed  
deformed nuclei, I try to explain the shell-structure and how to use those one-particle spectra  
as a function of deformation (so-called ‘Nilsson diagram’), in the study of the shape (and other  
physics quantities) of particular nuclei with (N,Z) such as stable prolate nuclei, oblate nuclei,  
nuclei with weakly-bound neutrons etc.   



Jahn-Teller effect (JTE) 
In a molecule with many atoms where the spatial distribution of nuclei has a high symmetry,  
the energy levels of the electron system are often degenerate.   
In such cases, when the geometrical distribution of nuclei is changed to lower symmetry,  
some degeneracy of the electron states is removed and some of the resulting states may have  
lower energy.        

Nuclear deformation (interpreted as a  JTE)  - 

Nuclear system is a self-consistent system, and constituents are only nucleons.  

JTE says nothing about the resulting shape and size of deformation.   
In order to obtain shape and size of deformation, shell-structure of deformed potentials must  
be studied.  The study is developed uniquely and extensively in nuclear physics.       

Spherical (high symmetry) nuclei with partially-filled shell have a high degeneracy,   
 when pair-correlation is neglected.    
When those nuclei are deformed (lower symmetry), a lower total energy may be obtained.   

(JTE) 

JTE has no direct relation to specific  2-body interactions in the system.  Instead ,   
 JTE is directly related to the symmetry of the mean-field.   
Instability of high symmetry is expressed in terms of the fluctuation of  the mean-field. 

(especially the ground-state deformations) 



If some nuclei show the specific feature of axially-symmetric quadrupole deformation, 
 such as     

rotational spectra 

it  is most efficient to start with a mean-field, which has the same symmetry. 

A simple and convenient one-body potential is harmonic-oscillator potential,  
which has a radial dependence  

though it cannot be used, for example, for weakly-bound neutrons. 

The very basic and simplest description of many-body systems is the (self-consistent)   
mean-field approximation to the many-body problem. 

Note  :  Shape (= one-body operator) is the property of the mean-field. 

Effective interaction in the derivation of self-consistent potential is not yet fixed.  
Details of radial shape of self-consistent potential depends on N and Z .   
Radial dependence of phenomenological potential may be used semi-quantitatively. } 

phenomenological potential  is used in the following. 



Axially-deformed quadrupole deformation (Y20 deformation)  

Spherical Woods-Saxon with spin-orbit potential with standard parameters  
(Bohr & Mottelson, vol.I, p.239)  ---an approximation to Hatree-Fock potential 
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standard parameters     Bohr & Mottelson, Nuclear Structure, vol.I, p.239  

r0  ≈ 1.27 fm           a  ≈  0.67 fm 
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⋅++= θθ
deformation parameter β 

Woods-Saxon case; 



S(n) = 7.3 MeV 

f7/2 , p3/2 

(oblate) (prolate) 

12 

1. Stable prolate nuclei ; ex.  The N=13 th neutron orbits observed as low-lying excitations in  25Mg13   

The above interpretation of the data works quantitatively : 
measured large E2 transitions within the bands  
→ β ≈ 0.3 - 0.4 

observed E2- and M1-intensity relations 
→  gs

eff = (0.7 – 0.9) gs
free  

{
One-particle levels named  with asymptotic quantum-  
 numbers  [N  nz  Λ Ω]  are doublely (±Ω) degenerate. 

 εres(f5/2 ) = 10.4 MeV  
 εres(f7/2 ) = 0.32 MeV 
 εres(p3/2) = 0.31 MeV 
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Z=12 favors prolate deformation, while Z=14 favors  
 oblate deformation. 

Ω : angular momentum component along sym axis 
      is a good quantum-number 



Prolate side of the Nilsson diagram for neutrons of stable 70Yb-isotopes 

Roughly speaking, one-particle levels  
 for spherical shape with  82 < N < 126  
 are degenerate.  Thus, if pairing interaction 
 is absent, systems with some neutrons  
 above the N=82 energy-gap are deformed  
 (JTE) . 

Stable rare-earth even-even nuclei with  
 90 ≤ N ≤ 112 are known to be axially- 
 symmetric quadrupole-deformed.  
  (text book examples) 

   

Observed properties of deformed stable rare-earth nuclei are quantitatively understood in terms  
 of one-particle motion in the Y20-deformed mean-field (B. & M., vol.II).    
Notion of one-particle motion in deformed mean-field works much better in deformed nuclei,  
 compared with one-particle motion in spherical potential for spherical nuclei.     

The wave functions of all one-particle levels, except those coming from high-j (here, i13/2 ) orbits,  
approach the asymptotic (i.e. very large β)  [N nz Λ Ω ]  wave-functions, already at β = 0.3 ~ 0.4. 

(The slope of asymptotic wave-functions,  dεΩ/dβ  , is determined by N and nz  .) 



Even-even nuclei in the range of  6 ≤ Z ≤ 40, of which observed electric Q moment of  
the 21

+  state shows clearly oblate shape (or a fluctuation towards oblate shape), are   
only the following five (six) nuclei;   

12
6C6  ,  28

14Si14 , 34
16S18 , 36

18Ar18 , 64
28Ni36,     ( 72

36Kr36 )  

Overwhelming dominance of prolate shape in observed even-even deformed nuclei is 
 not yet really clarified.   
At least, one may say that shell-structure, which strongly favors oblate shape,  
 is needed for obtaining oblate nuclei.   

Z (or N) = 6, 14, 18, 28, 36,  prefer oblate shape ? 

2.  Oblate nuclei 



42Si 74Fe 

Neutron numbers at large energy gaps on the oblate side (β ~ - 0.4) of realistic potentials  
 are indeed equal to 14, 18, 28, 36, 48, etc.     

↔ 

β ≈ -0.43 
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Y20 deformed harmonic-oscillator potential 

Magic-numbers for  (ω┴ :  ωz ) = (1 : 2)   
    = 6, 14, 26, 44, 68, …  

Magic-numbers for (ω┴ : ωz ) = (2 : 3)  
    = 6, 8, 14, 18, 28, 34, 48, 58, … 

Oblate side 
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ex.  Harmonic-oscillator N=4 shell 
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Degeneracy of one-particle levels in axially-symmetric quadrupole-deformed  
 pure harmonic-oscillator potential 
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In Nilsson diagrams (= one-particle energies as a function of deformation parameter β ) ,  

Shell-structure on the oblate side is simple and common to various realistic potentials. 
   (can be almost simulated in terms of deformed pure harmonic-oscillator potential).  
Shell-structure on the prolate side depends more sensitively on various parameters of realistic  
 potential.  Ex., the magic numbers of the pure h.o. (3:2) deformation (8,10,14,22,26,34, …)  

2p1/2 ? 

2p3/2 ? 

Strong deviation of realistic one-particle spectra from harmonic-oscillator    
       ←   high-j orbits, such as 1d5/2 ,1f7/2 , 1h11/2  , … , which are pushed down by strong ( ℓ ● s) potential.  

Splitting of high-j one-particle levels due to deformation is asymmetric between ptolate and oblate  
  sides.  On the oblate (β < 0) side the internal structure of one-particle levels with Λ ≤ N-2 has to  
  change drastically soon after |β|  increases from zero, due to the interaction with above-lying  
  one-particle levels with the same Ωπ .  →  shell-structure gets similar to harmonic oscillator.   
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I.H., PRC 89, 057301 (2014) 

31Ne  

42Si 

have nothing to do with large energy gaps in realistic potentials. 



(MeV) 
Potential strength 

When potential gets weaker, or when one-particle  
 energy approaches zero,  
 (a)  halo-phenomena are observed associated with  
    s1/2, p1/2 and p3/2 neutrons;   
 (b)  the shell-structure changes so that  s1/2 , p1/2 
    and p3/2 levels become energetically lower  
    relative to levels with larger ℓ .    

Spherical shape 

Deformed shape 

Ωπ = ½+  one-particle levels have ℓmin =0 component.  The s-component increases to unity as εΩ → 0.   
 As εΩ → 0,  Ωπ =1/2+  level becomes energetically lower relative to levels with larger Ω.  

Deformed halo 

Similarly, Ωπ = ½ -   and 3/2 -  one-particle levels have  ℓmin  = 1 component.  The p-component  
 increases as  εΩ → 0, with respect to levels with larger ℓ. 

3. Nuclei with weakly-bound neutrons ; Unique behavior of weakly-bound neutrons  
          with small  ℓ 



ex. Radial wave functions of the [200 ½] level  in Woods-Saxon potentials. 

Bound state with εΩ = -8.0 MeV. Bound state with εΩ = -0.0001 MeV. 

Similar behavior to wave functions in harmonic osc. potentials. Wave functions unique in finite-well potentials. 

s1/2 

d5/2 
d3/2 

Ωπ = 1/2+ one-particle level has  ℓmin = 0  component.   

As εΩ (<0) → 0, the structure of one-particle wave-functions may deviate  
 from [N nz Λ Ω], even for |β| → large.  
Nevertheless, one-particle levels are denoted by original  [N nz Λ Ω]. 

(The radius of potentials is adjusted to obtain respective eigenvalues  εΩ  .)   



For ε → 0, the s-dominance will appear in all Ωπ =1/2+  bound orbits.  However, 
  the energy, at which the dominance shows up, depends on both  
  deformation and respective orbits.  

ex.  Calculated  s½  probability in three Ωπ =1/2+  Nilsson orbits in the sd-shell  
           as a function of energy eigenvalue  εΩ . 

Ωπ=1/2+ neutron orbit → s1/2 ,   as |εΩ|→ 0.  

deformed core 

I.H., PRC 69, 041306 (2004).  



(MeV) 

 potential strength 

Spherical shape   (pf-shell) 



Calculated probabilities of  (ℓ j) components of one-particle [N nz Λ Ω] levels in the pf shell 
   as a function of energy eigenvalue  εΩ . 

ex.   Ωπ = 1/2 –  and  3/2 –  one-particle levels have  ℓ min = 1  component. 

[330 1/2] orbit [321 3/2] orbit 

The p-components increase as  εΩ → 0 , but the probability at εΩ = 0   depends on  
  respective levels, deformations, and the diffuseness of potentials. 

Deformed shape   (pf-shell)   



1f5/2 

2p3/2 

1f7/2 

1d3/2 

2s1/2 

2p1/2 ? 

At β=0 ; 
 ε(2p3/2) – ε(1f7/2) 
       = 680  keV 

S(n) = a few  
     hundreds keV ? 

One-particle neutron energies as a function of quadrupole deformation  β 

37Mg25   
 

[N nz Λ Ω] 

Iπ  =  
5/2 –    from   [312 5/2]    for 3.00 << β
1/2 –    from   [321 1/2]    for 6.03.0 << β{ no halo 

)1( =p halo 
( ) 3min = ) 

[312 5/2] 

[321 ½] 

In the case of very weak binding  
 N=28 is not a magic number ! 

Mg-isotopes are most likely  
 prolately-deformed up till  ca  
 N=28,  12Mg28  . 

IH, PRC 76, 054319 (2007) 

Ω : angular-momentum component along  the sym axis 

37Mg  is observed as deformed p-wave halo ;  N.Kobayashi, T.Nakamura, et al., PRL 112, 242501 (2014) : 

deformed halo ? 

All Mg- and Ne-isotopes with  
 N = 21, 23 and 25 may show  
 deformed p-wave halo ?  



2p1/2 ? 

2p3/2 ? 

One-particle neutron energies as a function of quadrupole deformation  β 

Iπ  = 
3/2 +   from    [202 3/2]     for 40.030.0 << β{ no halo 

31Ne21
 S(n) = 0.29 ± 1.64  MeV 

3/2 –   from     [330 1/2]     for 30.020.0 << β )1( =p halo 

3/2 -   from    [321 3/ 2]     for 58.040.0 << β )1( =p halo 

1/2 +    from    [200 1/2]     for 58.0>β )0( =s halo 

[N nz Λ Ω] 

)( ) 2min =

T.Nakamura et al., PRL 103, 262501 (2009), 
   Coulomb breakup of 31Ne → halo structure  

spherical  
   sym 

prolate   oblate 

Ω : angular momentum component  
       along the sym axis 

I.H., PRC 81, 021304(R) (2010) 

N = 21  neutron 

  

N=28 

From observed properties of 20
40
20Ca 28

48
20Caand 

(2~5) MeV 

2p3/2 

1f7/2 

spherical shape 

(stable doubly 
 -magic nuclei !) 

× 

Near degeneracy of  f7/2 , p3/2  and p1/2 resonant levels can be the origin of deformed shape of those N ≈ 20 nuclei.  

× 



1d3/2 

1d5/2 
2s1/2 

1p1/2 

At β=0 ;  
 ε(2s1/2)-ε(1d5/2) 
      = 140  keV 

One-particle neutron energies as a function of quadrupole deformation  β 
N ~ 8  region 

[12]  H.Ogawa et al., Eur.Phys.J. A 13 (2002) 81 
        H.Ueno et al., N.P.A738 (2004) 211 

[11]  K.Asahi et al., N.P.A704 (2002) 88c 

[13]  W.Geithner et al., PRL 83 (1999) 3792 

In μcalc    35.0=Rg
free

s
eff
s gg = }  are used. 

(for β≠0)  {

17C11    (3/2+) S(n) = 0.73 MeV 

11Be7    (1/2+ ) 

[N nz Λ Ω] 

S(n) = 0.50 MeV 

0.32 

0 

½ - 
½ + 

β ~ 0.7 
in 12Be  from (p,p’) 

11Be  can be deformed s-wave halo.  



Computer programs, in which neutron one-particle (both bound and resonant) energies  
 are calculated for given  β  and  Ωπ  , for a given Woods-Saxon potential, are available. 

In order to solve the eigenvalue and eigenphase problems for neutron one-particle  
 bound and resonant levels, respectively, as a function of axially symmetric quadrupole  
 deformation, the coupled differential equations obtained from the Schrodinger equation are  
 integrated in coordinate space with correct asymptotic behavior at  r = Rmax  , where R max  
 is so large that the nuclear potential (including spin-orbit potential) is totally negligible.   
For β ≠ 0 the resonant energy is defined as the energy, at which one of the eigenphases  
 increases through  π/2  as the energy increases.  One-particle resonance is absent, if none  
 of eigenphases increase through  π/2  as the energy increases.   

Those who want to have the programs should contact me. 

I.H.,PRC72, 024301 (2005); PRC73, 064308 (2006) 

For one-particle resonance in deformed potentials and eigenphase etc.  see, for example,    
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