

Low-energy Nuclear Physics program at CNS

Nobuaki Imai 今井 伸明

Low Energy Nuclear Reaction Group

- Q. Whether do I belong to Shimoura-san's lab?
- A. No. I don't. I'll run my own lab.

See http://www.cns.s.u-tokyo.ac.jp/index.php?Research

Contents

• Nuclear structure study via proton resonance elastic scattering

• Developing exotic targets

NUCLEAR STRUCTURE STUDY

Island of inversion

- Mass information around ³²Na
- 2hw configuration is dominant in g.s.

Single particle energies at 'Island of inversion'

- Energy gap between *pf-sd* orbits.
- Single particle states will be a direct evidence of the shell evolution.

Isobaric Analog Resonances of bound states in a neutron-rich nucleus

Same Isospin as the parent state
 Tz = T-1/2
 Same configuration as the parent state

Resonance shape

= angular momentum (/)
Resonance width

= total width (Γ_{tot})

Resonance height = proton width (Γ_p) ~ S^{pp}

Thick target inverse kinematics proton resonance elastic scattering with RIBs

Target (CH₂)

			C		
Center Univ. of	ior n i Tok	lucie V0) ear	Study	L

IAR 116Sn(p, p)116Sn						<u>116</u> Sn(transf	er		
E _p (c.m.) (MeV)	$E - E_0$ (MeV)	l _p	Ιπ	Γ_p (keV)	Г (keV)	$\Gamma_p/(\Gamma_p)_{sp}$	E (MeV)	l,	Ιπ	σ/σ_{sp}
6.869 7.022 7.873 8.038	0.000 0.153 1.004 1.169	0 2 2 2	$\begin{array}{r} 1/2 + \\ (3/2 5/2) + \\ (3/2 5/2) + \\ (3/2 5/2) + \end{array}$	16.5 8.3 1.8 1.4	42 37 42 35	0.38 0.52 0.051 0.035	0.0 0.16 1.03 1.19	0 2 2 2	$\frac{1/2 +}{3/2 +}$ $\frac{5/2 +}{5/2 +}$	0.65 0.55 0.061 0.033

Table 1-2 Comparison between T = 17/2 states in ¹/₄Sb and ¹/₄Sn. The table compares the properties of the isobaric analog states observed in proton scattering on ¹¹⁶Sn (Richard *et al.*, *loc. cit.*, Fig. 1-9) and (d, p) reactions on the same target (E. J. Schneid, A. Prakash, and B. L. Cohen, *Phys. Rev.* **156**, 1316, 1967). Column one gives the proton energy in the center-of-mass system. The energy in column two measures the excitation of the resonance state from the energy E_0 of the lowest T = 17/2 state in ¹¹⁷Sb. Column eight gives the excitation energy of the corresponding states in ¹¹⁷Sn. The single-particle proton widths $(\Gamma_p)_{pp}$ employed in column seven have been calculated by J. P. Bondorf and H. Lütken (private communication, 1967). The results of the coupled channel calculation are rather similar to those obtained by considering the scattering of a single proton in the nuclear potential and multiplying the width (as given by Eq. (3F-65)) by the factor $(2T_0 + 1)^{-1}$, which represents the probability of the proton channel in the state (1-66).

Bohr and Mottelson, Nuclear Structure Vol. 1, p48-

Overlap with the excited state

Decay channels to the excited states

cf.) ¹³⁸Ba(p,p')

$$|\psi_{IAR}\rangle = a |0_{g.s.}^{+};7/2^{+}\rangle + \beta |2_{2}^{+};3/2^{+}\rangle + ...$$

 $\alpha = 0.9 +/-0.1$
 $\beta = 0.02$

S. A. A. ZAIDI, P. VON BRENTANO, D. RIECK and J. P. WURM PhysicsLetters 19, 45 (1965).

Center for Nuclear Study Energy degraded ³⁴Si beam

Experimental setup

R-matrix fitting

³⁴Si: CH2 1 days accumulation C 0.5 days

X²/ndf = 24.1/32 = 0.75

N. Imai et al., PRC85, 034313

S. Nummela et al., PRC 63, 044316

(p,p) v.s. (d,p) for ³⁵Si

Study

Center for Nuc

Inconsistency of S

Study

Center for f Univ. of Tol

N.I et al., PRC85, 034313(2012).

G. Burgunder, O. Sorlin et al., Phys. Rev. Lett. 112,042502('14)

Ex (keV)	Jπ	S
g.s.	7/2-	0.56 (6)
910	3/2-	0.69(10)
2041	1/2-	0.73(10)

l	E_R (keV)	$E_{\rm ex}^{pp}$ (keV)	Γ_p (keV)	Γ_{tot} (keV)	$\Gamma_{\rm tot}/\Gamma_p$	$s_{j} = \ell + 1/2$
0	2783(24)	-223(24)	4.6(28)	4.6(81)	1.0 (16)	
3	3006(2)	0.0	1.6(4)	1.6(28)	1.0 (17)	0.63(16)
2	3151(24)	145(24)	3.3(27)	10.4(200)	3.2 (56)	0.17(13)
2	3809(18)	803(18)	26.7(69)	84.0(250)	3.1 (5)	0.70/00)
1	3990(36)	984(36)	185(43)	354(87)	1.9 (1)	1.37(32)
0	4450(44)	1444(44)	58.4(370)	215(150)	3.7 (11)	0.43(20)
2	5099(12)	2093(12)	3.8(9)	3.8(78)	1.0 (20)	0.04(1)
1	5200(15)	2194(15)	20.9(120)	32.0(220)	1.5 (0.6)	0.12(7) → 0.33(23) for

Expected spectrum from our result

Ex (keV)	Jb	$d\sigma/d\Omega_{DW}$ (θ_{cm} =40) (arb. unit)	S ^{pp}	S ^{dp}	
0	1f _{7/2}	7.8	0.63	0.56	
910	2p _{3/2}	1.46	1.37	0.69	
974	1d _{3/2}	3.6	0.79		
1444	2s _{1/2}	1.8x10 ⁻²	0.45		
2041	2p _{1/2}	1.3	0.33	0.73	ľ
2168	1d _{5/2}	1.0	0.04		

Future plan; around ¹³³Sn

Decrease of spin-orbit int.

Study

Center for Nuclear Study Univ. of Tokyo

¹³²Sn(*p,p*) for IARs of ¹³³Sn

E _x (keV)	E _{cm} (MeV)	J۳	$\Gamma_{p}(keV)$
0.	11.17	7/2-	22.
854.	12.024	3/2-	108.
1363	12.533	1/2-	118
1561	12.731	9/2-	5.4
2005	13.175	5/2 ⁻	41.

Setup for IAR of ¹³³Sn

1.7x10³ pps/²³⁸U 1pnA Intensity is enough Energy distribution is too wide...

To achieve dE/E = 100 keV/50 MeVTof of 10m flight with 100 ps resolution will be measured.

NEW PROJECT-PRODUCTION OF PURE ^{178M2}HF

Hyperdeformation

r Study

Center for Nuc Univ. of Tokyo

http://www.nap.edu/openbook.php?record_id=11796

Isomer beam/target

Search for torus shape nucleus

Isomer beams(10¹⁰pps) Or isomer target

T. Ichikawa PRL 109, 23250

Other topics... High-spin X High-spin collision Elastic Scatt. On isomeric state Gamma lasers ...?

Isomer beams at RIKEN

- Fusion reaction ${}^{16}O({}^{136}Xe,7n){}^{145m}Sm(49/2^+)$
 - +windows less gas target
 - + solenoid
 - +slits to stop primary beam

;[10⁵pps Purity ~ 0.1% – 10%

T. Kishida et al., NIMA 484 ('02) 45-55 H. Watanabe et al., NPA746, ('04)540.

T.E. Cocolios, Ph. D thesis (K.U. Leuven)

Only by changing wavelength little bit !

The isomer ^{178m2}Hf

Study

Center for N Univ. of Tok

Longest half-life isomer

$$T_{1/2} = 31$$
 years
I = 16+

Fusion of ¹⁶O+ ^{178m2}Hf(16+)

Population of high-spin state will be possible.

PHYSICAL REVIEW C 68, 044606 (2003)

Exploratory studies towards fusion with the 16⁺ isomer of ¹⁷⁸Hf

. Hinde,¹ N. Rowley,² M. Dasgupta,¹ R. D. Butt,¹ C. R. Morton,¹ and A. Mukherjee^{1,*}

¹⁹⁴Hg(Z=80, 114)

J. Dudek et al., PLB211, 252 ('88)

Fm(Z=100), Cm(Z=98), Pu(Z=96)

Production of ¹⁷⁸Hf^{m2} target at Dubna

¹⁷⁶Yb(⁴He,2n)^{178m2}Hf

Hyperfine Interactions 107 (1997) 129-139

Yu. Oganessian et al.,

Table 2

178 Hf isomer accumulation runs at the U-200 Dubna cyclotron

Target	¹⁷⁶ Yb enrichment	Date of the run	He integral no.	178m2Hf produced
no.	(%)		of ions	atoms
1	93	1989	$2.6 imes10^{19}$	1.4×10^{13} Alma-Ata
2	96	jun. 1990	$1.5 imes 10^{18}$	0.4×10^{13} Alma-Ata
3	96	jul. 1990	$6.2 imes 10^{18}$	$1.6 imes 10^{13}$
4	96	nov. 1990	$1.3 imes 10^{20}$	1.2×10^{14}
5	96	dec. 1990	$2.1 imes 10^{20}$	$1.6 imes10^{14}$
6	96	dec. 1991	$0.6 imes 10^{20}$	$0.6 imes 10^{14}$
7	99.998	dec. 1991	$4.5 imes 10^{20}$	3.5×10^{14}
8	96	dec. 1992	$0.7 imes 10^{20}$	$0.8 imes10^{14}$
9	99.998	febr. 1993	$3.4 imes 10^{20}$	$4.8 imes 10^{14}$
10	99.998	nov.1993	$2.4 imes 10^{20}$	$3.4 imes 10^{14}$
11	99.998	nov.1994	3.2×10^{20}	$4.6 imes10^{14}$

cf1.) for $5x10^{14}$ 178 Hf, 30 uA 36MeV X 500 h (20 days) cf2.) RIKEN AVF 5uA 50 MeV

Collinear laser spec. with 178Hfm2

Isomer/gs. of ¹⁷⁸Hf were well separated.

PRL72, 2689 ('92)

cf.) IP of Hf = 6.825 eV

This means removing ¹⁷⁸Hf(0) is possible !

What are new ?

1. $^{178}Hf_{g.s.}$ separation by lasers

2. ¹⁷⁸Hf(16⁺) acceleration

Resonant laser ionization

Hyperfine interaction makes isomer/g.s. of ¹⁷⁸Hf well separated.

T. Sonoda et al., NIMB 267, 2918('09)

Search for new scheme(s)

Study

Transition from the ground state to a state of J=1 and of a large A coefficien

λ1 (nm)	(eV)	A coefficient (s ⁻¹)
270.5611	4.58	1.01e ⁸
288.9621	4.29	6.68e ⁷
301.6815	4.11	3.07e ⁷
377.7655	3.28	2.32e ⁷

Confirmation of hyperfine splitting is needed.

Excitation energy (eV)	Atomic spin <i>J</i>	Population (%) @2000 K
0	2	74
0.29211	3	19
0.5663	4	5
0.6846	0	0.278
0.8149	1	0.4

What's to do

Isotope shift/hyperfine splitting of atomic transitions with stable Hf isotopes.
 → off-line TOF mass spectrometer

- Hot cavity-Laser ion source at E2 modification of PA at E2
- Production of multi-charged ion of Hf w/ECR

 $\begin{array}{l} \text{SUS container} \\ \text{CCI}_4 \\ +\text{HfO}_2 \end{array}$

r Study

Center for Nuc

Univ. of Toky

Production isomer beam