Present status of KEK isotope separation system (KISS)

Y.X. Watanabe (IPNS, KEK)

Contents

- 1. Motivation
- 2. Multinucleon transfer reaction Production of the r-process nuclei around N = 126
- 3. Results of R&D experiments of KISS Collection and separation of nuclei
- 4. Summary

Identification of astrophysical site for r-process \sim How are the elements of Gold and Platinum synthesized \sim

H. Grawe et al., Rep. Prog. Phys. 70 (2007), 1525-1582

Identification of astrophysical site for r-process

- → Actual r-process path
 (β-decay flow equilibrium)
- Mass measurement
 - → Temperature and neutron density condition for the 3rd peak formation $((n,\gamma)-(\gamma,n)$ equilibrium)

1st stage: Lifetime of nuclei from ²⁰⁴Pt to ²⁰⁰W

Experimental issues

How to access?

Efficient production of nuclei of interest \rightarrow MNT reaction

How to collect and separate?

High efficiency and purity → KISS

Nuclear production by MNT reactions

Proposed by C.H. Dasso et al., Phys. Rev. Lett. 73 (1994), 1907. Recently revised by V. Zagrebaev and W. Greiner, Phys. Rev. Lett. 101 (2008), 122701

MNT reaction of ¹³⁶Xe + ¹⁹⁸Pt

GRAZING calculation

- A. Winther, Nuclear Physics A572 (1994), 191-235;
- A. Winther, Nuclear Physics A594 (1995), 203-245.

Estimation of production yields

Comparison with measurements

Discrepancy of **centroids of the isotopic distributions** and **absolute cross sections** of them becomes larger as number of transferred protons increase

MNT measurement of ¹³⁶Xe + ¹⁹⁸Pt

Charge and mass distributions of PLF

Z identification of PLF

Z-A distribution of PLF

Isotopic distributions of PLF (0, $\pm 1p$, $\pm 2p$ transfer)

Isotopic distributions of PLF ($\pm 3p$, $\pm 4p$ transfer)

 $E_{lab} = 8 \text{ MeV/A}$

(55% higher than the Coulomb barrier) Deep-inelastic components Equilibrium of mass-to-charge ratio Measurements
 GRAZING after evaporation

Z – N distribution of PLF for different TKEL

Evaluation of TLF distribution

Isotopic distributions of TLF (0, $\pm 1p$, $\pm 2p$ transfer)

Isotopic distributions of TLF ($\pm 3p$, $\pm 4p$ transfer)

How to collect and separate MNT products?

- Efficient collection
- Separation of Z and A

Laser ion-source with argon gas-cell

What is KISS

The KISS is designed for simultaneous separation of mass (A) and element (Z) of products by MNT reactions in heavy nuclear system with a high collective efficiency.

KISS (KEK Isotope Separation System) @ RIKEN

KISS setup

R&D History

Off- and on-line test results

- Gas cell purity
- Extraction time
- Extraction efficiency
- Signal-to-noise ratio (Beam purity)

Gas cell purity

Extraction efficiency

Signal-to-noise ratio (Beam purity)

Extraction of unstable nucleus

Detection system was installed in 2014

Extracting unstable ¹⁹⁹Pt (30.8 min.) (1*n* stripping) Measuring lifetime successfully

Accessible region for lifetime measurements

T. Kurtukian-Nieto et al., Eur. Phys. J. A 50 (2014), 135 KUTY : T.Tachibana, M. Yamada, Proc. Inc. Conf. on exotic nuclei and atomic masses, Arles, 1995, p763,

Comparison between MNT and fragmentation

	MNT	U-fragmentation
Production σ (²⁰² Os) Ratio	20 μb (GRAZING code) 1	~4.4 pb (J. Kurcewicz et al., PLB 717 (2012), 371) 10 ⁻⁷
Target thickness Ratio	2 mg/cm ² (¹⁹⁸ Pt) 1	1.7 g/cm ² (⁹ Be 9 mm) 10 ⁴
Beam intensity Ratio	~100 pnA (20 pnA practically) 1	~1 pµA (?) (10 pnA practically?) 1
Efficiency Ratio	>10 ⁻³ 1	10 ⁻¹ 10 ²
S/N (Beam purity)	300 (99.7%)	?
Total ratio	1	10 ⁻¹ ?

Further R&D issues

- Improvement of extraction efficiency : $\sim 0.1\% \rightarrow \sim 1\% \rightarrow$ more
 - Investigation for molecular ion formation in gas Time measurement of molecular ion formation (Colinear laser)
 - Further purification of gas (Suppression of contaminants H₂O, H) Low-outgassing material (Ti) for gas cell
 Cooling of gas cell
 - Investigation of neutralization efficiency
 New gas cell structure to suppress plasma induced by beam
 - Improvement of transportation efficiency and dissociation of molecular ion Multistage SPIG
- Modification/optimization of the detection system
 - β-telescope structure Improvement of detection efficiency : ε_β = 46% → >80% Background rate : 1.1 cps → ~ 0.1 cps
 - Low background β -telescope Gas counter + plastic scintillator : ~ 10 cph
- More favorable production
 - ²³⁸U beam + ¹⁹⁸Pt target : ~10 times larger cross section (GRAZING)
 Optimization of gas cell design

KISS will be open for external user program in 2016, start call-for-proposal at the end of 2015 from RIKEN NP-PAC2015 Characterize 3rd peak of abundance pattern in terms of nuclear physics points of view through lifetime measurements of the waiting point nuclei as an ultimate goal of the physics motivation of the project

1st stage : Lifetime measurements 204 Pt ~ 200 W (*N*=126) \leftarrow MNT of 136 Xe + 198 Pt

• Installation of KISS was completed

Detection system is under modification for higher detection efficiency and lower background

- Results of PLF measurements support N = 126 TLF production
- Under on-line test for extracting MNT TLFs as R&D exp.

 $\varepsilon_{ext} \sim 0.15\%$, S/N ~ 300

- Reducing the formation of molecular ions, especially H₂Oand H-attachments
- → Looking for the missing 999 parts among 1000

KISS will be open for external user program in 2016, start call-for-proposal at the end of 2015 from RIKEN NP-PAC2015

Collaboration

KISS project

КЕК	Y. Hirayama, H. Ishiyama, H. Miyatake,
	H.S. Jung, M. Oyaizu, Y.X. Watanabe
IBS	S.C. Jeong
CNS	N. Imai
Seoul National University	Y.H.Kim
Tsukuba University	S. Kimura, M. Mukai
RIKEN	Y. Matsuo, M. Wada, T. Sonoda
K.U. Leuven	P. Van Duppen , Yu. Kudryavtsev, M. Huyse

MNT measurements at GANIL

КЕК	Y. Hirayama, N. Imai, H. Ishiyama, S.C. Jeong,
	H. Miyatake, Y.X. Watanabe
Seoul National University	S.H. Choi, Y.H. Kim, J.S. Song
GANIL	M. Rejmund, C. Schmitt, A. Navin,
	G. de France, E. Clement
Torino University	G. Pollarolo
LNL	L. Corradi, E. Fioretto
Padova University	D. Montanari
IPN	M. Niikura, D. Suzuki
Osaka University	H. Nishibata, J. Takatsu