Dynamical approach for Heavy-ion reaction and Multi-nucleon transfer

Y. Aritomo

Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo, Japan Flerov Laboratory of Nuclear Reactions, Dubna, Russia

The 11th RIBF Discussion on Heavy-ion reaction and multi-nucleon March 2nd, 2015 University of Tsukuba

FLNR SCIENTIFIC PROGRAMME Year 2015

Synthesis and Properties of Nuclei at the Stability Limits Leader: M.G. Itkis Scientific leader: Yu.Ts. Oganessian

Research of shell effects in multi-nucleon transfer reactions in order to investigate the production of superheavy neutron-rich elements in collision of actinide nuclei (238U+ 238U, 136Xe+ 248Cm, 197Au+238U). Study of the multicluster decay of heavy nuclei. Heavy-ion reaction Multi-nuclear transfer reaction

• Synthesis of Superheavy elements

Fusion-fission Quasi-fission Deep inelastic collision

Fission

Dissipative process

Kinetic energy → Intrinsic energy

> Friction Dynamical model

• Multi-nuclear transfer reaction in Heavy mass region

Contains

1. Introduction

Reaction in heavy mass region and superheavy elements

2. Model

(1) Coupled-channels method (quantum) + Langevin calculation (classical) fusion-fission process -- Orientation effect

(2) Full Langevin calculation (classical) DIS, nucleon transfer

3. Results

³⁶S+²³⁸U and ³⁰Si+²³⁸U Capture Cross-section Fusion Cross-section, Evaporation residue cross section Mass distribution of Fission fragments

- 4. Multi-nucleon transfer reaction Surrogate reaction Zagrebaev
- 5. Summary

Periodic Table

Super Heavy Elements \rightarrow less stable

Our Interests

- Next magic number ←Z=82, N=126
- Verification of 'Island of Stability' (predicted by macroscopic-microscopic model in 1960's)
- Synthesis of new elements

Heavy ion reaction Cold fusion reaction Hot fusion reaction 1994 110 Ds $^{62}Ni + ^{208}Pb \rightarrow ^{269}110 + n (GSI)$ 111 Rg $^{64}Ni + ^{209}Bi \rightarrow ^{272}111 + n (GSI)$ 1996 112 Cn 70 Zn + 208 Pb \rightarrow 277 112 + n (GSI) \leftarrow named in Feb. 2010 1999 114 Fl $^{48}Ca + ^{244}Pu \rightarrow ^{292}114 + 3n$ (FLNR) \leftarrow named in May. 2012 2000 116 Ly ${}^{48}Ca + {}^{248}Cm \rightarrow {}^{292}1\overline{16} + 4n$ (FLNR) \leftarrow named in May. 2012 2002 $^{48}Ca + ^{249}Cf \rightarrow ^{294}118 + 3n$ (FLNR) 118 2003 115 $^{48}Ca + ^{243}Am \rightarrow ^{288}115 + 3n \rightarrow ^{284}113 + \alpha$ (FLNR) 2004 $70Zn + 209Bi \rightarrow 278113 + n$ (RIKEN) 113 2010 $^{48}Ca + ^{249}Bk \rightarrow ^{294,293}117 + 3-4n$ (FLNR) 117

Fusion process in Superheavy mass region

 $\sigma_{ER} = \frac{\pi \hbar^2}{2\mu_0 E_{cm}} \sum_{\ell=0}^{\infty} (2\ell+1) T_{\ell}(E_{cm},\ell) P_{CN}(E^*,\ell) W(E^*,\ell)$

Projectile dependence of fragment mass distributions

Experiments by K. Nishio et al. (JAEA)

$^{30}Si + ^{238}$ \leftarrow Zcn=106

et al.

 $^{36}S + ^{238}U$ Zcn=108 →

Effects of Static Nuclear-deformation on Fusion

Orientation effects of target nucleus

(1) Coupled-channels method (quantum) + Langevin calculation (classical)

fusion-fission process -- Orientation effect

(2) Full Langevin calculation (classical) DIS, nucleon transfer

Estimation of cross sections

calculate R_{cont} for all θ transform to the nose-nose conf. keeping R_{cont}

Overview of Dynamical Process in reaction ³⁶S+²³⁸U

Nuclear shape

two-center parametrization (z, δ, α)

(Maruhn and Greiner, Z. Phys. 251(1972) 431)

 $q(z,\delta,\alpha)$

$$z = \frac{z_0}{BR}$$
$$B = \frac{3+\delta}{3-2\delta}$$

R: Radius of the spherical compound nucleus

$$\delta = \frac{3(a-b)}{2a+b} \qquad (\delta 1 = \delta 2)$$
$$\alpha = \frac{A_1 - A_2}{A_{CN}}$$

Multi-dimensional Langevin Equation

$$\frac{dq_i}{dt} = (m^{-1})_{ij} p_j$$
Friction
Random force
dissipation
fluctuation
$$\frac{dp_i}{dt} = -\frac{\partial V}{\partial q_i} - \frac{1}{2} \frac{\partial}{\partial q_i} (m^{-1})_{jk} p_j p_k - \gamma_{ij} (m^{-1})_{jk} p_k + g_{ij} R_j (t)$$

Newton equation

 $\langle R_i(t) \rangle = 0, \ \langle R_i(t_1)R_j(t_2) \rangle = 2\delta_{ij}\delta(t_1 - t_2)$: white noise (Markovian process) $\sum_k g_{ik}g_{jk} = T\gamma_{ij}$

- q_i : deformation coordinate (nuclear shape) two-center parametrization (z, δ, α) (Maruhn and Greiner, Z. Phys. 251(1972) 431)
- p_i : momentum

 m_{ij} : Hydrodynamical mass γ_{ii} : Wall and Window (one-body) dissipation (inertia mass) (friction)

$$E_{\rm int} = E^* - \frac{1}{2} (m^{-1})_{ij} p_i p_j - V(q)$$

 E_{int} : intrinsic energy, E^* : excitation energy

Potential Energy

$$V(q, \ell, T) = V_{DM}(q) + \frac{\hbar^2 \ell(\ell+1)}{2I(q)} + V_{SH}(q, T)$$
$$V_{DM}(q) = E_S(q) + E_C(q)$$
$$V_{SH}(q, T) = E_{shell}^0(q) \Phi(T)$$

T : nuclear temperature $E^* = aT^2$ *a* : level density parameter Toke and Swiatecki

- E_S : Generalized surface energy (finite range effect) E_C : Coulomb repulsion for diffused surface E^0_{shell} : Shell correction energy at T=0
- *I*: Moment of inertia for rigid body

 $\Phi(T)$: Temperature dependent factor

$$\Phi(T) = \exp\left\{-\frac{aT^2}{E_d}\right\}$$
$$E_d = 20 \,\text{MeV}$$

Overview of Dynamical Process in reaction ³⁶S+²³⁸U

Calculated spectra for fusion-fission and quasi-fission

Experiments by K. Nishio et al. (JAEA)

ER cross-sections for ^{267,268}Hs produced by ³⁴S + ²³⁸U

Fusion and ER cross sections

K. Nishio et al., PRC 82, 044604 (2010).

³⁶S + ²³⁸U

Time evolution of probability distribution

Try to clarify the origin of difference between the both cases \rightarrow

(c) Trajectory Analysis \rightarrow "*Probability* Distribution"

³⁰Si+²³⁸U

³⁶S+²³⁸U

*E** = 35.5 MeV L=0, θ=0 *E** = 39.5 MeV L=0, θ=0

Probability distribution of total time on the z- δ plane

(1) Coupled-channels method (quantum) + Langevin calculation (classical)

fusion-fission process -- Orientation effect

(2) Full Langevin calculation (classical)

DIS, nucleon transfer

Diabatic and Adiabatic Potential Energy

 $V_{\text{diabat}}(R,\beta_1,\beta_2,\alpha,...) = V_{12}^{\text{folding}}(Z_1,N_1,Z_2,N_2;R,\beta_1,\beta_2,...) + M(A_1) + M(A_2) - M(\text{Proj}) - M(\text{Targ})$

 $V_{\text{adiabat}}(\mathsf{R},\beta_1,\beta_2,\alpha,...) = \mathsf{M}_{\mathsf{TCSM}}(\mathsf{R},\beta_1,\beta_2,\alpha,...) - \mathsf{M}(\mathsf{Proj}) - \mathsf{M}(\mathsf{Targ})$

Time - dependent driving potential has to be used

$$V(t) = V_{\text{diab}}(\xi) \cdot exp(-\frac{t_{\text{int}}}{\tau_{\text{relax}}}) + V_{\text{adiab}}(\xi) \cdot [1 - exp(-\frac{t_{\text{int}}}{\tau_{\text{relax}}})]$$

$$\tau_{\text{relax}} \sim 10^{-21} \text{ s}$$

Time-dependent weight function
the same degrees of freedom !

G. F. Bertsch, 1978; W. Cassing, W. Nörenberg, 1983. A. Diaz-Torres, 2004; A. Diaz-Torres and W. Scheid, 2005.

Langevin type equation

Defers touching puckers transfer

mij: Hydrodynamical mass (mono-nucleus region), Reduced mass (separated region) *yij*: Wall and Window (one-body) dissipation

Calculation with Langevin equation DIC

transfer reaction ${}^{18}O + {}^{238}U \rightarrow {}^{16}O + {}^{240}U$ E_{lab}=160 MeV

Emission angle and mass ratio of fission fragments

 \rightarrow Analyze fusion fission dynamics

A. Wakhle, D. Hinde and his group (ANU)

D.J. Hinde et al, PRL 101,092701 (2008) R.du Rietz et al, PRL 106, 052701 (2011)

³⁴S+²³²Th

Way to synthesize new SHE

1) Ti, Cr, Fe etc. beams $\leftarrow {}^{48}$ Ca beams

2) Secondary beams

3) Transfer reaction U+Th, U+Cm

Valery Ivanovich Zagrebaev (1950-2015) FLNR, JINR, Dubna Russioa

Quasi-fission and fusion-fission processes

DIP

240

0.02 mb

120 160 200 fragment mass number

10

40

DIF

80

$$\begin{split} & \frac{dR}{dt} = \frac{p_R}{\mu_R} \quad \text{Variables: } \{ \mathsf{R}, \theta, \varphi_1, \varphi_2, \beta_1, \beta_2, \eta \} \\ & \frac{d\Theta}{dt} = \frac{\ell}{\mu_R R^2} \quad \text{Most uncertain parameters:} \\ & \frac{d\Theta_1}{dt} = \frac{\ell}{\mu_R R^2} \quad \text{Most uncertain parameters:} \\ & \frac{d\Theta_1}{dt} = \frac{L_1}{\Im_1}, \frac{d\varphi_2}{dt} = \frac{L_2}{\Im_2} \\ & \frac{d\beta_1}{dt} = \frac{p_{\beta 1}}{\mu_{\beta 1}} \\ & \frac{d\beta_2}{dt} = \frac{p_{\beta 2}}{\mu_{\beta 2}} \\ & \frac{d\eta}{dt} = \frac{2}{A_{CN}} D_A^{(1)}(\eta) + \frac{2}{A_{CN}} \sqrt{D_A^{(2)}(\eta)} \Gamma_{\eta}(t) \\ & \eta = \frac{A_1 + A_2}{A_1 + A_2} \\ & \frac{d\eta}{dt} = -\frac{\partial V}{\partial R} + \frac{\ell^2}{\mu_R R^3} + \left(\frac{\ell^2}{2\mu_R^2 R^2} + \frac{p_R^2}{2\mu_R^2}\right) \frac{\partial\mu_R}{\partial R} + \frac{p_{\beta 1}^2}{2\mu_{\beta 1}^2} \frac{\partial\mu_{\beta 1}}{\partial R} + \frac{p_{\beta 2}^2}{2\mu_{\beta 2}^2} \frac{\partial\mu_{\beta 2}}{\partial R} - \gamma_R \frac{p_R}{\mu_R} + \sqrt{\gamma_R T} \Gamma_R(t) \\ & \frac{d\ell}{dt} = -\frac{\partial V}{\partial \Theta} - \gamma_{\text{tang}} \left(\frac{\ell}{\mu_R R} - \frac{L_1}{\Im_1} a_1 - \frac{L_2}{\Im_2} a_2\right) R + \sqrt{\gamma_{\text{tang}} T} \Gamma_{\text{tang}}(t) \\ & \frac{dL_2}{dt} = -\frac{\partial V}{\partial\varphi_2} + \gamma_{\text{tang}} \left(\frac{\ell}{\mu_R R} - \frac{L_1}{\Im_1} a_1 - \frac{L_2}{\Im_2} a_2\right) a_2 - \frac{a_2}{R} \sqrt{\gamma_{\text{tang}} T} \Gamma_{\text{tang}}(t) \\ & \frac{dL_2}{dt} = -\frac{\partial V}{\partial\varphi_1} + \frac{p_{\beta 1}^2}{2\mu_{\beta 1}^2} \frac{\partial\mu_{\beta 1}}{\partial\beta_1} + \frac{p_{\beta 2}^2}{2\mu_{\beta 2}^2} \frac{\partial\mu_{\beta 2}}{\partial\beta_1} + \left(\frac{\ell^2}{2\mu_R^2 R^2} + \frac{p_R^2}{2\mu_R^2}\right) \frac{\partial\mu_R}{\partial\beta_1} - \gamma_\beta \frac{p_{\beta 1}}{\mu_{\beta 1}} + \sqrt{\gamma_{\beta 1} T} \Gamma_{\beta 1}(t) \\ & \frac{dp_{\beta 1}}{dt} = -\frac{\partial V}{\partial\varphi_2} + \gamma_{\text{tang}} \left(\frac{\ell}{\mu_R R} - \frac{L_1}{\Im_1} a_1 - \frac{L_2}{\Im_2} a_2\right) a_2 - \frac{a_2}{R} \sqrt{\gamma_{\text{tang}} T} \Gamma_{\text{tang}}(t) \\ & \frac{dL_2}{dt} = -\frac{\partial V}{\partial\varphi_1} + \frac{p_{\beta 1}^2}{2\mu_{\beta 1}^2} \frac{\partial\mu_{\beta 1}}{\partial\beta_1} + \frac{p_{\beta 2}^2}{2\mu_{\beta 2}^2} \frac{\partial\mu_{\beta 2}}{\partial\beta_1} + \left(\frac{\ell^2}{2\mu_R^2 R^2} + \frac{p_R^2}{2\mu_R^2}\right) \frac{\partial\mu_R}{\partial\beta_1} - \gamma_\beta \frac{p_{\beta 1}}{\mu_{\beta 1}} + \sqrt{\gamma_{\beta 1} T} \Gamma_{\beta 1}(t) \\ & \frac{dp_{\beta 2}}{dt} = -\frac{\partial V}{\partial\varphi_2} + \frac{p_{\beta 1}^2}{2\mu_{\beta 1}^2} \frac{\partial\mu_{\beta 1}}{\partial\beta_2} + \frac{p_{\beta 2}^2}{2\mu_R^2} \frac{\partial\mu_{\beta 2}}{\partial\beta_2} + \left(\frac{\ell^2}{2\mu_R^2 R^2} + \frac{p_R^2}{2\mu_R^2}\right) \frac{\partial\mu_R}{\partial\beta_2} - \gamma_\beta \frac{p_{\beta 2}}{\mu_{\beta 2}} + \sqrt{\gamma_{\beta 2} T} \Gamma_{\beta 2}(t) \\ & \frac{d\mu_R}{dt} = \frac{\partial V}{\partial\varphi_2} + \frac{p_{\beta 1}^2}{2\mu_R^2} \frac{\partial\mu_R}{\partial\varphi_2} + \frac{p_{\beta 2}^2}{2\mu_R^2} \frac{\partial\mu_R}{\partial\varphi_2} + \frac{p_R^2}{2\mu_R^2} \frac{\partial\mu_R}{\partial\varphi_2} - \gamma_R \frac{\mu_R}{\partial\varphi_2} + \sqrt{\gamma_R T} \Gamma_{\beta 2}(t) \\ & \frac{d\mu_R}{dt} = \frac{\partial V}{\partial\varphi_2} + \frac{p_R^2}{2\mu_R^2} \frac{\partial\mu_R}{\partial\varphi_$$

Nucleon transfer

Shell effects in damped collisions ¹⁶⁰Gd + ¹⁸⁶W

Shell effects in damped collisions of transactinides. New way to superheavies

Isotopic yield of SHE in collisions of transactinides

Isotopic yield of SHE in collisions of transactinides

V.I. Zagrebaev and W. Greiner, PRC 87, 034608 (2013)

Spontaneous Fission (Fragment Mass Yield)

Nuclei produced in ²³⁸U and ²⁴⁸Cm

Isotopic yield of SHE in collisions of transactinides

¹⁹⁸Pt+²³⁸U

E_{c.m.}=700 MeV

V.I. Zagrebaev and W. Greiner, PRC 87, 034608 (2013)

5. Summary

- 1. In order to analyze the fusion-fission process in superheavy mass region, we apply the Couple channels method + Langevin calculation.
- 2. Incident energy dependence of mass distribution of fission fragments (MDFF) is reproduced in reaction ³⁶S+²³⁸U and ³⁰Si+²³⁸U.
- 3. The shape of the MDFF is analyzed using *probability distribution*
- 4. The relation between the touching point and the ridge line is very important to decide the process \rightarrow fusion hindrance

And....

Collaborators

K. Hagino Department of Physics, Tohoku University

K. Nishio Advanced Science Research Center, Japan Atomic Energy Agency

S. Chiba Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology

V.I. Zagrebaev, A.V. Karpov Flerov Laboratory of Nuclear Reactions

W. Greiner *Frankfurt Institute for Advanced Studies, J.W. Goethe University*

