

Workshop on Science with SpiRIT TPC

5-6 June 2015 RIKEN Asia/Tokyo timezone

Relationship between nucleon and pion freeze out

李慶峰

Qingfeng Li (Huzhou University)

湖州师范学院-现代物理研究所 Institute of Modern Physics, Huzhou Teachers College

Outline

Background

- On the theoretical side:
 - Theory/Model richness
 - Model dependence
 - Observable systematicness and correlations
- On the experimental side:
 - Existing flow data from FOPI/LAND at GSI
 - New ASY-EOS(S394) experiment at GSI
 - Ability of $S\pi RIT$ interested by theoretical "coolies"
- Theoretical concerns (partially)
 - Multi-systems and multi-observables
 - Consistent dynamic process
 - Good after-burner

• Suggestions for upcoming $S\pi RIT$ experiments

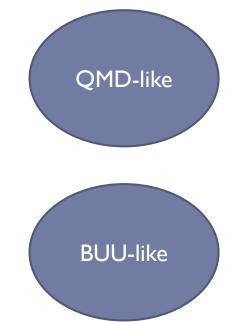
Background: on the theoretical side

• Microscopic Many-Body Approaches

Non-relativistic Brueckner-Bethe-Goldstone (BBG) Theory Relativistic Dirac-Brueckner-Hartree-Fock (DBHF) approach Self-Consistent Green's Function (SCGF) Theory Variational Many-Body (VMB) approach Green's Function Monte Carlo Calculation V_{lowk} + Renormalization Group

• Effective Field Theory

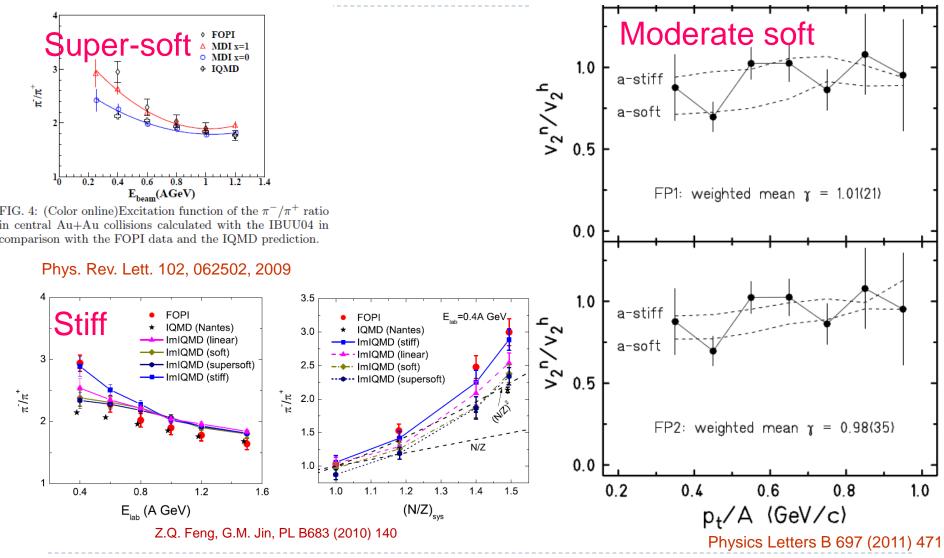
Density Functional Theory (DFT) Chiral Perturbation Theory (ChPT) QCD-based theory


Phenomenological Approaches Relativistic mean-field (RMF) theory Quark Meson Coupling (QMC) Model Relativistic Hartree-Fock (RHF) Non-relativistic Hartree-Fock (Skyrme-Hartree-Fock) Thomas-Fermi (TF) approximations Self-consistent Relativistic Boltzmann Uehling-Uhlenbeck (SC-RBUU)

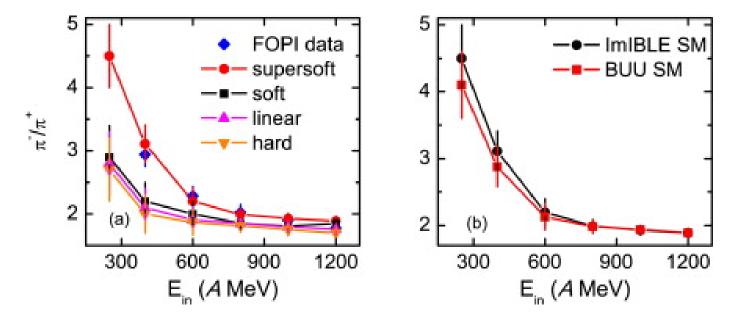
Go with: Successes, Uncertainties Improvements Need: Successors

Background: on the theoretical side

Transport Models for HIC's at intermediate energies:

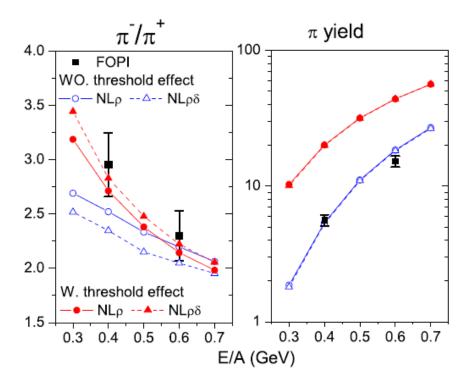

- N-body approaches
 - ► QMD
 - AMD, BQMD, CMD
 - ▶ IDQMD, ImQMD, IQMD
 - FMD, LQMD, UrQMD
- One-body approaches
 - **BUU**
 - ▶ (I)BUU/VUU, GiBUU
 - ► BNV, LV, IBL
- Relativistic covariant approaches
 - ► **RBUU**/RVUU
 - RQMD

Background: on the theoretical side

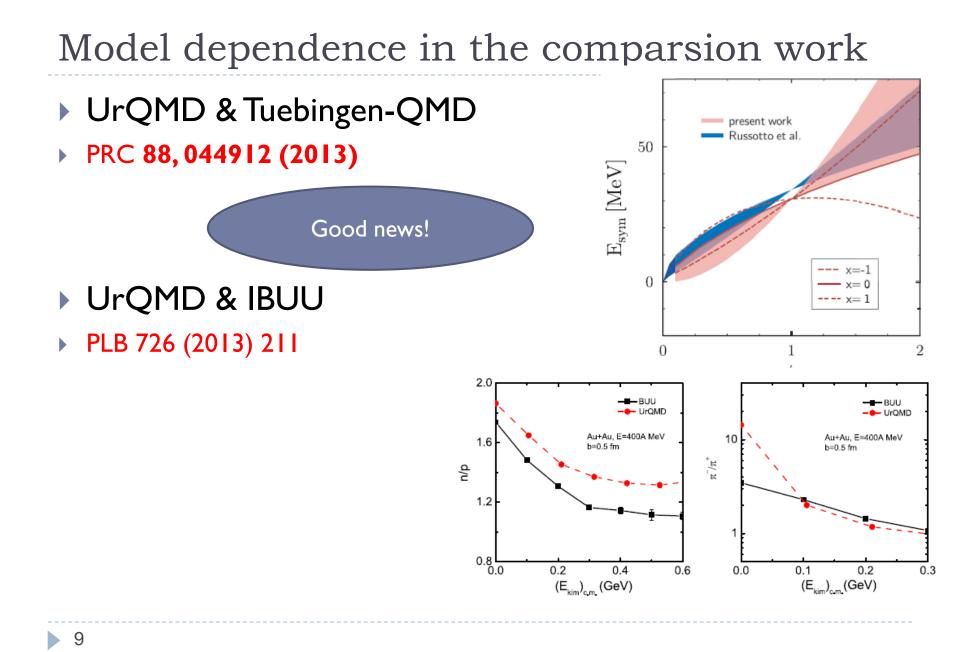

Modelers	Models	References
A. Ono	AMD	PRC66(02)014603
C. Hartnack	IQMD	EPJ A1 (98)151
P. Napolitani	BQMD	PR202(91)233
Y.X. Zhang	ImQMD	PL B664 (08)145; PR C71 (0 5) 024604; PR C74 (06)014602
P. Danielewicz	BUU	A lot! 😳 🛛 🔿
QF. Li	UrQMD-m	PRC73(06)051601; 83(11)044617; 89(14)034606;89 ° 14)044603;JPG32(06)151
P. Giordano	BNV (CT)	NPA732(04)202; PRC72(05)064609
M. Pfabe	BNV	NPA703 (2002) 603
T. Gaitanos	RBUU(Munich)	NP A714 (03)643;NP A741 (04)209
GiBUU (SK)	BUU-Giessen	gibuu.physik.uni-giessen.de
GiBUU (RMF)	RBUU-Giessen	PL B663 (08)197; arXiv:0904.2106v1; PR C76 (07)044909
BA. Li	IBUU	PR160(88)189; PRC44(91)450 & 2095.
H. Schade	BUU	PLB 695 (2011)74

Puzzles related to SE at high-densities (During 2009-2011)

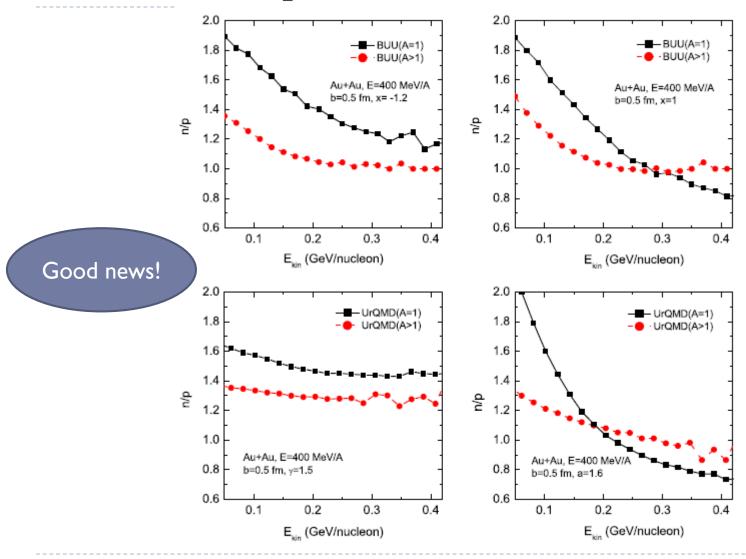
In the year 2013...


Super-soft, again

W. J. Xie, ... F.S. Zhang, PLB 718 (2013) 1510


In the year 2014...

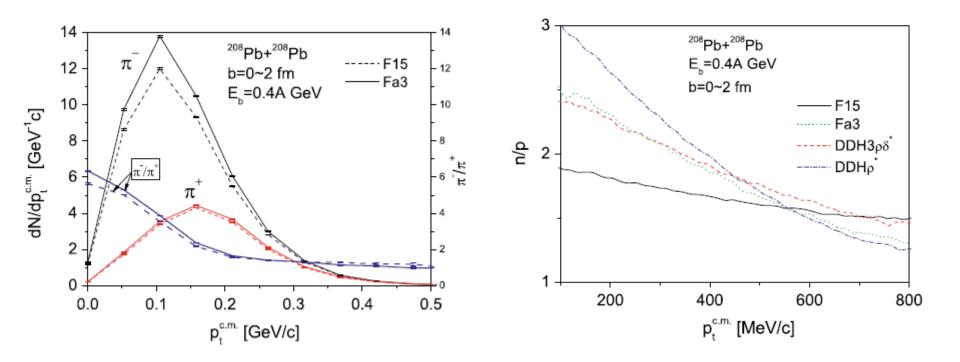
It does not matter? It DOES matter!


Medium modifications on threshold energy is essential, which will be discussed later.

See, TS&CK, PRC91, 014901(2015) for more details

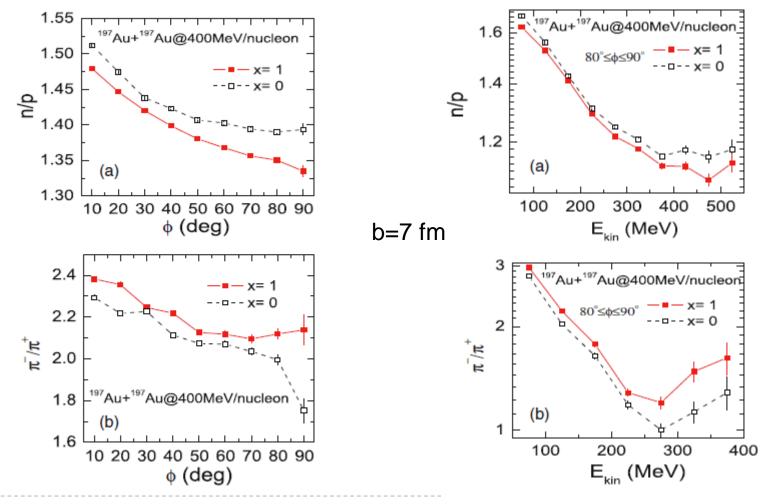
PLB738 (2014) 397

Further comparison between UrQMD&IBUU



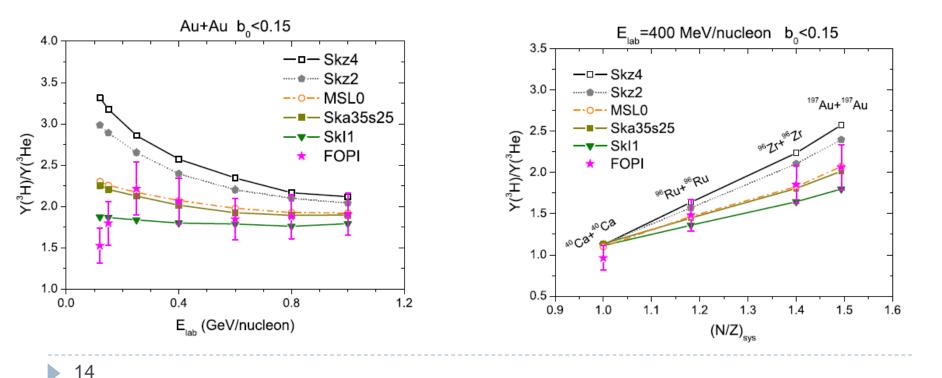
Probes of DDSE especially at high densities from the HICs

- The (double) ratio of multiplicities of nucleons, Δs, Σs, pions, kaons and hard photons as functions of Eb, b, N/Z; pt, y, Ekin, etc.
- The (double) flow, flow difference, differential flow of nucleons, pions as functions of Eb,b,N/Z,pt, y, Ekin, etc.
- Keep ongoing …


Experimental windows are useful

A previous example from PRC 72, 034613 (2005)

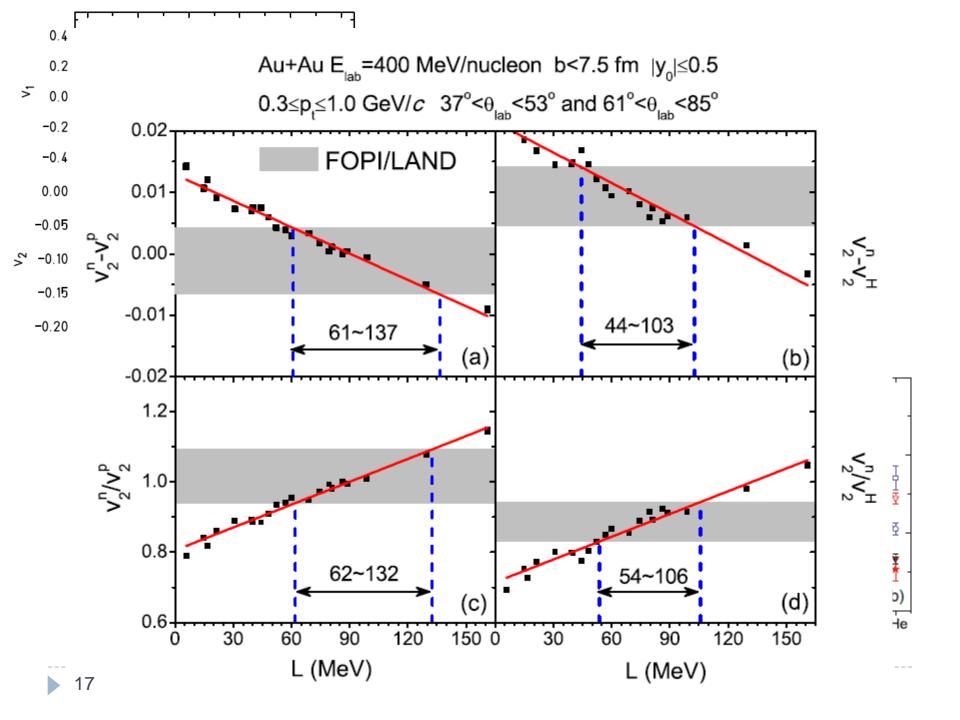
Experimental windows are useful


A recent example from PRC 88, 057601 (2013)

SE at $\rho < \rho_0$ should be also noticed...

A recent example from: Eur. Phys. J. A (2015) 51: 37

is found that the ${}^{3}\text{H}/{}^{3}\text{He}$ ratio is sensitive to the nuclear symmetry energy at sub-saturation densities. Model calculations with moderately soft to linear symmetry energies are in qualitatively agreement with the ${}^{3}\text{H}/{}^{3}\text{He}$ ratio data of the FOPI Collaboration. This result is in line with both the recent constraints on the low-density symmetry energy available in the literature and our previous results for the high-density symmetry energy obtained with the elliptic flow of free nucleons and hydrogen isotopes as a sensitive probe.

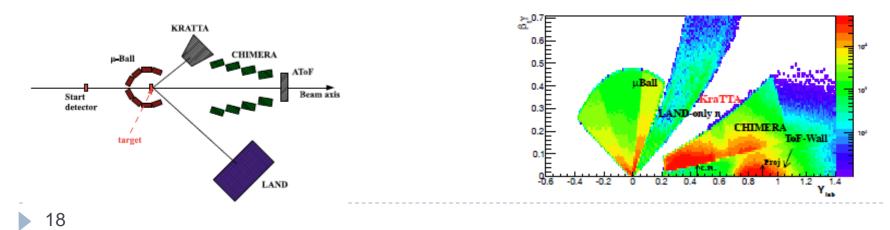


Background: on the experimental side

- Quite a few facilities working (partly) for this field:
 - FRIB (or FRIB/China?) at MSU in USA
 - NUSTAR at FAIR/GSI in Germany
 - RIBF at RIKEN in Japan
 - CSR at HIRFL/Lanzhou in China
 - KoRIA in Korea

ALADIN/FOPI/LAND existing flow data ~ UrQMD analysis

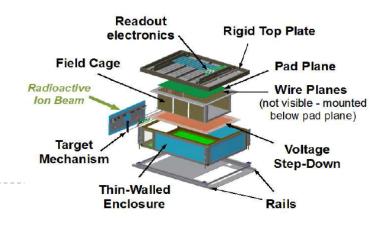
- List of Publications (Year 2009-2014):
 - Prog. in Part. and Nucl. Phys. 62 (2009) 425;
 - Int. J. of Mod. Phys. E 19 (2010) 1653;
 - Phys. Lett. B 697 (2011) 471;
 - Phys. Rev. C 83 (2011) 044617;
 - **SCIENCE CHINA Physics,** 55 (2012) 252 ;
 - Phys. Rev. C 88 (2013) 044912 ;
 - **Eur. Phys. J.A** 50 (2014) 38;
 - Phys. Rev. C 89 (2014), 034606;
 - Phys. Rev. C 89 (2014), 044603



EPJ Web of Conferences **66**, 03074 (2014)

With the help of KraTTA from Krakow

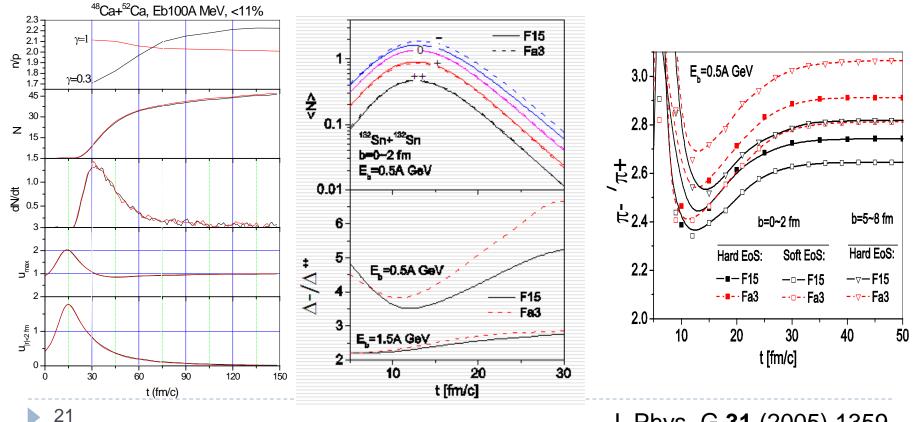
ASY-EOS(S394) experiment at GSI


- Au+Au; Zr+Zr; Ru+Ru
- E_b=400 MeV/nucleon
- Within a large impact parameter range
- ► Z≤4 (up to Be)
- nearly 4 π coverage
- Yield, yield ratios, flow parameters v₁,v₂
- Especially for neutrons with high precision.

http://dx.doi.org/10.1016/j.nima.2015.01.026

Ability of $S\pi RIT$ interested by theoretical workers

- ▶ ¹³²Sn+¹²⁴Sn; ¹²⁴Sn+¹¹²Sn; ¹⁰⁸Sn+¹¹²Sn; ¹¹²Sn+¹²⁴Sn
- ▶ E_b up to 350 MeV/nucleon
- Central collisions
- Z \leq 3 (up to Li); charged π mesons
- nearly 4 π coverage
- Yield, yield ratios
- ... to be learned from this workshop.

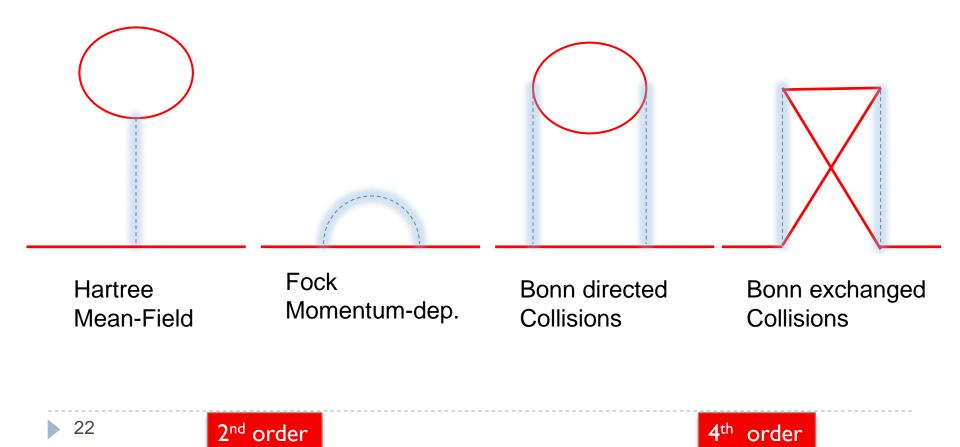


Theoretical concerns (partially)

- Multi-systems
 - From Zr+Zr, Sn+Sn, to Au+Au
 - From central to mid-central collisions
 - With beam energies up to 400 MeV/nucleon
- Multi-observables
 - From neutron, proton, up to Li
 - From baryons to mesons
 - From yield, yield ratio, to flows
 - Within large rapidity y and transverse momentum p_t ranges
- Totally optimistic if all of these are measured with a high precision from experimental side.
- And, a close collaboration between us is essential

Theoretical concerns

However, theoretically, the whole dynamical process should be investigated thoroughly, which makes the situation much more complicated.



J. Phys. G 31 (2005) 1359

N- Δ - π dynamics

— in the view of Quantum Transport Theory based on RBUU

▶ time evolution of a many-particle quantum system→nonequilibrium field theory—QHD

Mean-Field Term

• On-shell:

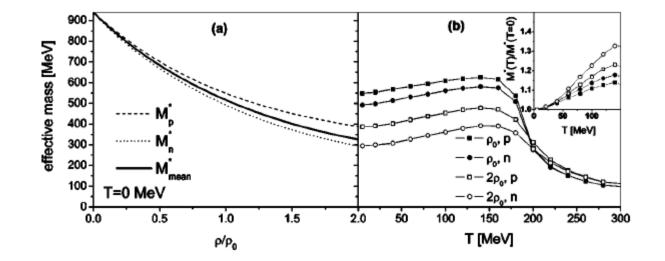
$$\overline{p}^{\mu}\overline{p}_{\mu}=M_{\rm Re}^{*^{2}}$$

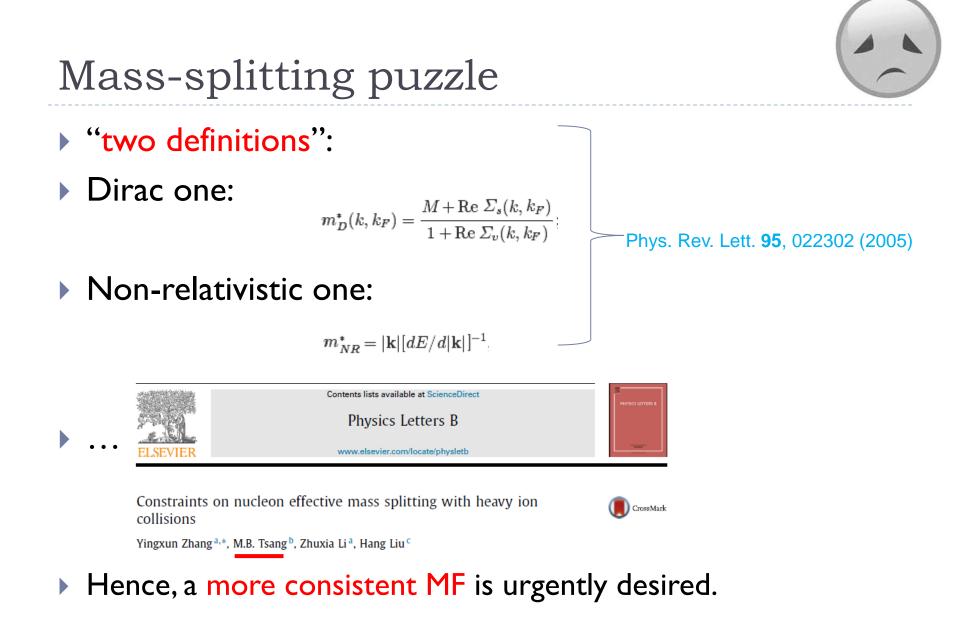
And:

$$\overline{p}^{\mu}(X,p,t) = p^{\mu} - \sum_{H}^{\mu}(X,t) - \operatorname{Re}\sum_{F}^{\mu}(X,p,t),$$
$$M_{\operatorname{Re}}^{*}(X,p,t) = M + \sum_{H}(X) + \operatorname{Re}\sum_{F}(X,p,t).$$
$$\Delta$$

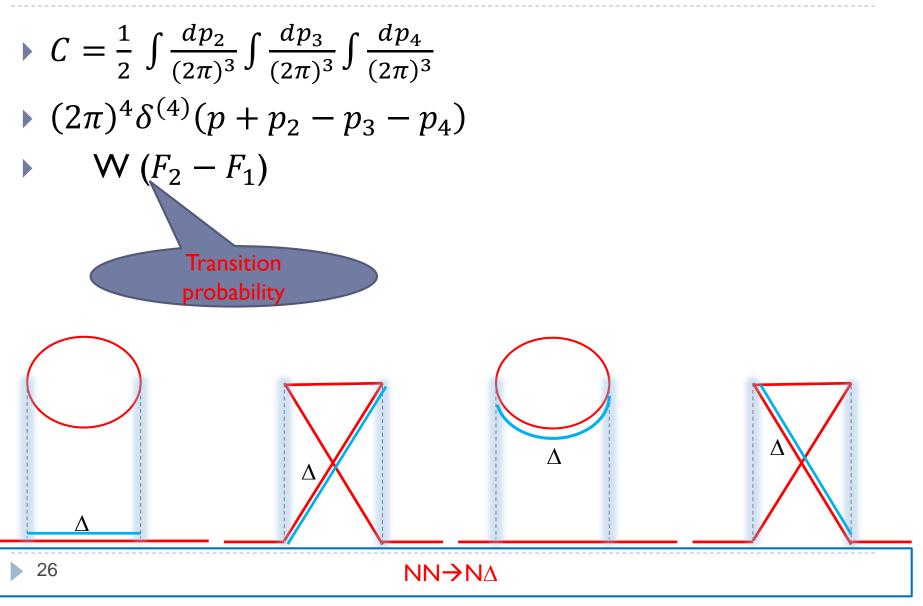
For simplicity, for simplicity...

Mass-splitting


PRC 69, 017601 (2004)


$$\begin{split} L &= \overline{\Psi} [i\gamma_{\mu}\partial^{\mu} - M_{N}] \Psi + \frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma - \frac{1}{4} F_{\mu\nu} \cdot F^{\mu\nu} + \frac{1}{2} \partial_{\mu} \delta \partial^{\mu} \delta \\ &- \frac{1}{4} L_{\mu\nu} \cdot L^{\mu\nu} - \frac{1}{2} m_{\sigma}^{2} \sigma^{2} + \frac{1}{2} m_{\omega}^{2} \omega_{\mu} \omega^{\mu} - \frac{1}{2} m_{\delta}^{2} \delta^{2} + \frac{1}{2} m_{\rho}^{2} \rho_{\mu} \rho^{\mu} \\ &+ g_{\sigma} \overline{\Psi} \Psi \sigma - g_{\omega} \overline{\Psi} \gamma_{\mu} \Psi \omega^{\mu} + g_{\delta} \overline{\Psi} \tau \cdot \Psi \delta \\ &- \frac{1}{2} g_{\rho} \overline{\Psi} \gamma_{\mu} \tau \cdot \Psi \rho^{\mu}, \end{split}$$

$$M^* = M_0 + \Sigma_{H(\sigma)}(x, \tau) + \Sigma_{H(\delta^0)}(x, \tau).$$
(1)


 $\Sigma_{H(\sigma)}$ and $\Sigma_{H(\delta)}$ are the self-energy parts of nucleon contributed from σ and δ mesons, respectively. Because the selfenergy $\Sigma_{H(\delta^0)}(x, \tau)$ has opposite sign for neutron and proton for isospin asymmetric medium the correction of the nuclear medium to proton mass and neutron mass from δ meson is of opposite sign. Thus the proton and neutron effective masses differ for isospin asymmetric systems. The effective chemical potential μ^* is

$$\mu_i^* = \mu_i + \Sigma_{H(\omega)}^0(x, \tau) + \Sigma_{H(\rho^0)}^0(x, \tau).$$
(2)

Collision Term (also complicated)

Transition probability W ~ spin+isospin matrices

- Spin matrix: Φ;lso-spin matrix: Τ
- Directed: D; Exchanged: E

•
$$W = \sum_{p_3 \leftrightarrow p_4} \frac{1}{16E_1E_2E_3E_4} (T_D \Phi_D - T_E \Phi_E)$$

Transition probability W ~ differential cross section $d\sigma/d\Omega$

From W based on RBUU

•
$$\int v \frac{d\sigma}{d\Omega} d\Omega = \frac{\int dp_3}{(2\pi)^3} \frac{\int dp_4}{(2\pi)^3} (2\pi)^4 \delta^{(4)} (p + p_2 - p_3 - p_4) W$$

• ν is Moder velocity.

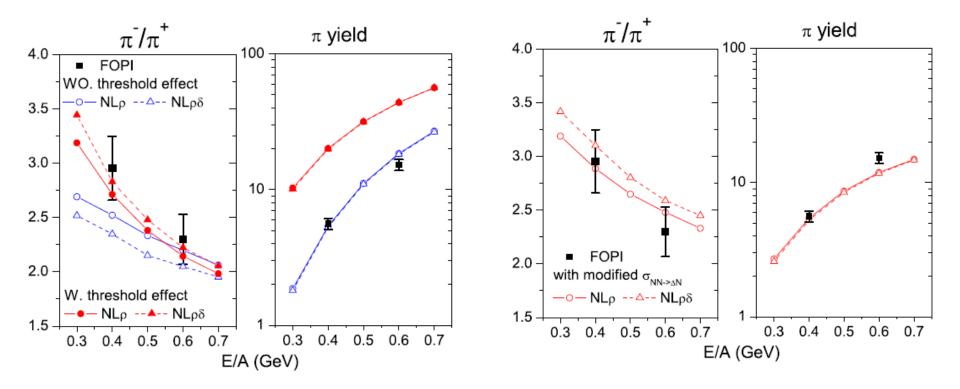
$$v = \frac{\sqrt{(p \cdot p_2)^2 - p^2 p_2^2}}{p^0 p_2^0}$$

In the c.o.m of two particles:

•
$$\frac{dp_3 dp_4}{E_1 E_2 E_3 E_4} = \frac{\nu}{s} \frac{|p_3|}{|p_1|} d\Omega dQ$$

• $s = (p + p_2)^2; t = (p - p_3)^2; u = (p - p_4)^2$

 $(s,t,u) \rightarrow (s,cos(\theta))$


differential cross section $d\sigma/d\Omega$ ~integral cross section

$$\sigma_{NN \to B_{3}B_{4}} = \frac{1}{8(1+\delta_{B_{3}B_{4}})} \int \frac{d\sigma}{d\Omega} d\Omega$$

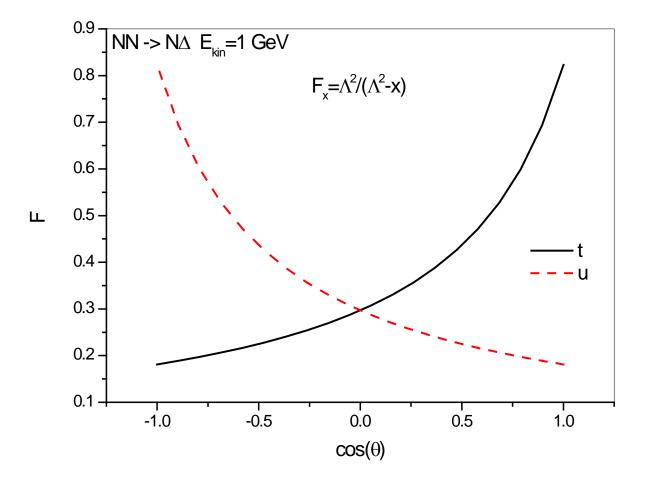
$$d \leq d_{0} = \sqrt{\frac{\sigma_{\text{tot}}}{\pi}}, \qquad \sigma_{\text{tot}} = \sigma(\sqrt{s}, \text{ type}).$$
Threshold: $s \to s - (m_{1}^{*} + m_{2}^{*})^{2} + 4m^{*^{2}}$
CS:
CS:
See, PRC69, 017601 (2004),
for NN \rightarrow NN case
$$g_{0}^{00} g_{0}^{00} g_{0}^{0} g_{0}^{00} g_{0}^{00} g_{0}^{0} g_{0$$

29

Medium modified threshold-energy and cross section effects on pion production

See, TS&CK, PRC91, 014901(2015)

Hold on... Is that all done?


Form Factors at vertices

 Considering of the effect of finite size of hadrons (to model the deviations from the point-like couplings due to the quark structure of nucleons and resonances.)

$$F_{NNA}(t) = \frac{\Lambda^2}{\Lambda^2 - t}$$

 Λ is the cut-off parameter and governs the range of suppression of the contributions of high momenta.

It is angular-dep.:

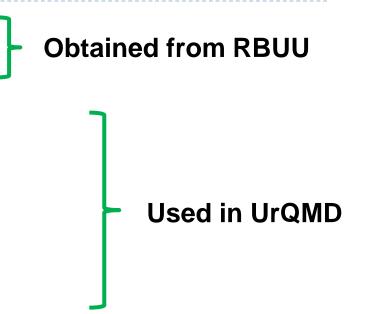
 $\frac{d\sigma}{d\Omega} \rightarrow \frac{d\sigma}{d\Omega} F_{NNA}^2 F_{NNB}^2$

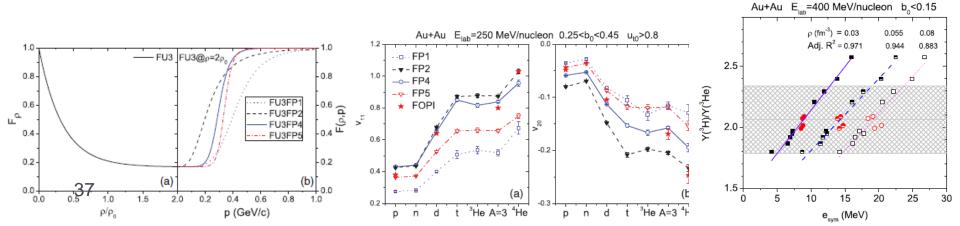
Because it is not clear a priori which form these additional factors should have, they introduce a source of systematical error in all models. And the parameters extracted can depend strongly on the functional form used for the form factors.

For NN->N Δ

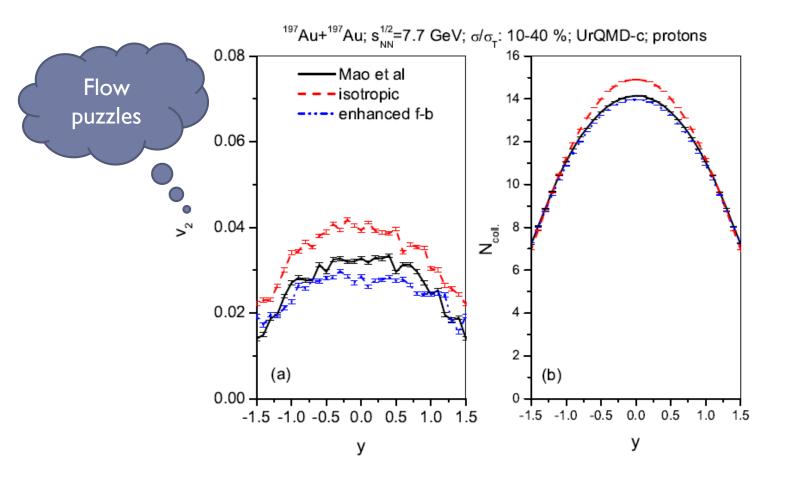
$$\frac{d\sigma}{d\Omega} \to \frac{d\sigma}{d\Omega} F_{NNA}^2 F_{NNB}^2 \mathbf{F}_{res}^2$$

 \blacktriangleright because of the decay of the Δ resonance and the existence of the distribution function

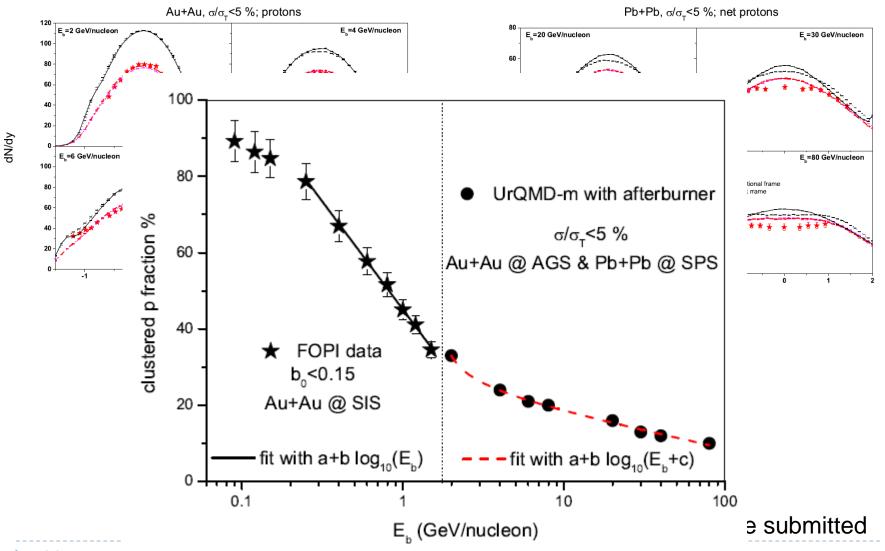

•
$$F_{res} = \left(\frac{\frac{1}{4}\Gamma^2(\langle q \rangle)}{(\langle M_{\Delta} - M_0 \rangle)^2 + \frac{1}{4}\Gamma_0^2}\right)^{\frac{1}{4}}$$


Angular distributions in UrQMD

- It is assumed that the angular distributions for all relevant two-body processes are similar and can be described approximately by the differential cross-section of inmedium NN elastic scattering derived from the collision term of the RBUU equation.
- It only uses free cross sections and free on-shell particles.
- It is only used for the angular distributions of all elementary two-body processes but not for the corresponding total cross sections.


Medium Modifications on NNECS

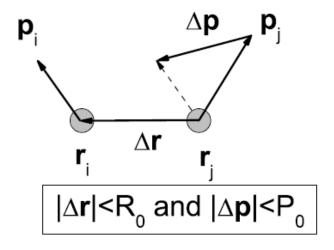
- PHYSICAL REVIEW C, 62,014606 (2000)
- PHYSICAL REVIEW C 69,017601 (2004)
- J. Phys. G: Nucl. Part. Phys. **32 (2006) 407**
- PHYSICAL REVIEW C 81,034913 (2010)
- PHYSICAL REVIEW C 83,044617 (2011)
- PHYSICAL REVIEW C 89,034606 (2014)
- PHYSICAL REVIEW C 89,044603 (2014)
- Eur. Phys. J.A **51 (2015) 37**

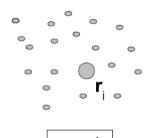


NNCS even at higher energies...

To be submitted

After-burner: is important in a large beam energy region

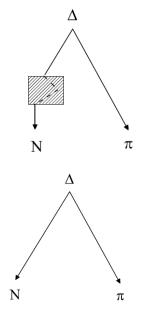


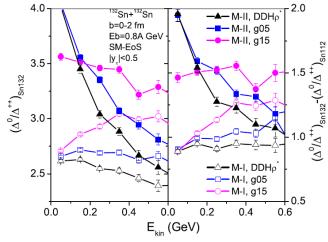

39

How to construct clusters?

- δr ? But if too excited?
- δp? But if gays or lesbins?
- More polishments on:
 - Isospin-dependence
 - Excitation energy
 - (due to strong phase-space)
 - correlation, excitation energy
 - has been almost decided by $\delta r \& \delta p$)

Coalescence Model (Minimum Spanning Tree)





 $\rho_i > \rho_0 / c$

- "contaminated" one from one-π pt distribution
- "pure" ONE from correlated protons and charged pion pairs

See MPLA 24 (2009) 41 for more details.

Suggestions for upcoming $\text{S}\pi\text{RIT}$ experiments

- ✓ How about the determination of the reaction plane and impact parameter?
- ✓ How about the systematic and statistic errors?
- 1 n/p, π^{-}/π^{+} , ³H/³He, v_{1} , and v_{2} ? (multi-observables)
- 2 y and p_t distributions; y-p_t- correlated distribution? (window-cut sensitivity)
- 3 To reconstruct Δ ? (high density SE, and a better after-burner)

Thank you for your attention!

D