Influence of clusters and symmetry energy on pion production at 300 MeV/nucleon

Akira Ono

Tohoku University

Workshop on Science with SpiRIT TPC June 5, 2015, RIKEN

Collaborators: N. Ikeno (Tottori U), Y. Nara (Akita Int'I U), A. Ohnishi (YITP)

Symmetry energy at various densities

Nuclear EOS (at $\overline{T=0}$)

$$(E/A)(\rho_p,\rho_n) = (E/A)_0(\rho) + S(\rho)\delta^2 + \cdots$$
$$\rho = \rho_p + \rho_n, \quad \delta = \frac{\rho_n - \rho_p}{\rho_n + \rho_p}$$

•
$$S_0 = S(\rho_0)$$

•
$$L = 3\rho_0 (dS/d\rho)_{\rho=\rho_0}$$

Constrains on $S(\rho)$

Horowitz et al., J. Phys. G: Nucl. Part. Phys. 41 (2014) 093001.

- Uncertainties at high densities.
- Clusters at low densities, at least.

Dynamics of neutrons and protons at 300 MeV/nucleon

General purpose

Explore the symmetry energy at $\rho \sim 2\rho_0$.

 $S(\rho) \Rightarrow$ Compression stage \Rightarrow Obs.(?)

Nucleon observables

Pion observables

 132 Sn + 124 Sn, E/A = 300 MeV, $b \sim 0$

Au + Au at 250 MeV/u

- Clusters are important at least in the late stage of collisions.
- What about the cluster correlations at earlier times?

AMD wave function

$$\Phi(Z)\rangle = \frac{\det}{ij} \left[\exp\left\{ -\nu \left(\mathbf{r}_j - \frac{\mathbf{Z}_i}{\sqrt{\nu}} \right)^2 \right\} \chi_{\alpha_i}(j) \right]$$

$$\begin{split} \mathbf{Z}_{i} &= \sqrt{\mathbf{v}} \mathbf{D}_{i} + \frac{i}{2\hbar\sqrt{\mathbf{v}}} \mathbf{K}_{i} \\ \mathbf{v} &: \text{Width parameter} = (2.5 \text{ fm})^{-2} \\ \chi_{\alpha_{i}} &: \text{Spin-isospin states} = p \uparrow, p \downarrow, n \uparrow, n \downarrow \end{split}$$

Time-dependent variational principle

$$\delta \int_{t_1}^{t_2} \frac{\langle \Phi(Z) | (i\hbar \frac{d}{dt} - H) | \Phi(Z) \rangle}{\langle \Phi(Z) | \Phi(Z) \rangle} dt = 0, \qquad \delta Z(t_1) = \delta Z(t_2) = 0$$

Equation of motion for the wave packet centroids Z

$$\frac{d}{dt}\mathbf{Z}_{i} = \{\mathbf{Z}_{i}, \mathcal{H}\}_{\mathsf{PB}} + (\mathsf{NN \ collisions})$$

 $\{\mathbf{Z}_i, \mathcal{H}\}_{PB}$: Motion of wave packets in the mean field

$$\mathcal{H} = \frac{\langle \Phi(Z) | H | \Phi(Z) \rangle}{\langle \Phi(Z) | \Phi(Z) \rangle} + (\text{c.m. correction}), \qquad H: \text{ Effective interaction (e.g. Skyrme force)}$$

Skyrme force

$$v_{ij} = t_0 (1 + x_0 P_\sigma) \delta(\mathbf{r}) + \frac{1}{2} t_1 (1 + x_1 P_\sigma) [\delta(\mathbf{r}) \mathbf{k}^2 + \mathbf{k}^2 \delta(\mathbf{r})] \qquad \mathbf{r} = \mathbf{r}_i - \mathbf{r}_j$$
$$+ t_2 (1 + x_2 P_\sigma) \mathbf{k} \cdot \delta(\mathbf{r}) \mathbf{k} + t_3 (1 + x_3 P_\sigma) [\rho(\mathbf{r}_i)]^\alpha \delta(\mathbf{r}) \qquad \mathbf{k} = \frac{1}{2\hbar} (\mathbf{p}_i - \mathbf{p}_j)$$

Expectation value of interaction energy can be written by using several kinds of densities.

$$\langle V \rangle = \int \mathcal{V}\left(\rho(\mathbf{r}), \tau(\mathbf{r}), \Delta\rho(\mathbf{r}), \mathbf{j}(\mathbf{r})\right) d\mathbf{r}$$

$$\rho_{\alpha}(\mathbf{r}) = \int f_{\alpha}(\mathbf{r}, \mathbf{p}) \frac{d\mathbf{p}}{(2\pi\hbar)^{3}} = \left(\frac{2\nu}{\pi}\right)^{3/2} \sum_{i \in \alpha} \sum_{j \in \alpha} e^{-2\nu(\mathbf{r}-\mathbf{R}_{ij})^{2}} B_{ij} B_{ji}^{-1}, \qquad \mathbf{R}_{ij} = \frac{1}{2\sqrt{\nu}} (\mathbf{Z}_{i}^{*} + \mathbf{Z}_{j})$$

$$\mathbf{j}_{\alpha}(\mathbf{r}) = \int \frac{\mathbf{p}}{M} f_{\alpha}(\mathbf{r}, \mathbf{p}) \frac{d\mathbf{p}}{(2\pi\hbar)^{3}} = \left(\frac{2\nu}{\pi}\right)^{3/2} \sum_{i \in \alpha} \sum_{j \in \alpha} \frac{\mathbf{P}_{ij}}{M} e^{-2\nu(\mathbf{r}-\mathbf{R}_{ij})^{2}} B_{ij} B_{ji}^{-1}, \qquad \mathbf{P}_{ij} = i\hbar\sqrt{\nu}(\mathbf{Z}_{i}^{*} - \mathbf{Z}_{j})$$

$$\tau_{\alpha}(\mathbf{r}) = \int \frac{\mathbf{p}^{2}}{M^{2}} f_{\alpha}(\mathbf{r}, \mathbf{p}) \frac{d\mathbf{p}}{(2\pi\hbar)^{3}} = \left(\frac{2\nu}{\pi}\right)^{3/2} \sum_{i \in \alpha} \sum_{j \in \alpha} \frac{\mathbf{P}_{ij}^{2} + 3\hbar^{2}\nu}{M^{2}} e^{-2\nu(\mathbf{r}-\mathbf{R}_{ij})^{2}} B_{ij} B_{ji}^{-1}$$

Momentum dependence has been corrected for high energy collisions, in a similar way to Gale, Bertsch, Das Gupta, PRC 35 (1987) 1666.

Akira Ono (Tohoku University)

Influence of clusters and symmetry energy on pion produc

NN collisions with cluster correlations

$N_1 + B_1 + N_2 + B_2 \rightarrow C_1 + C_2$

- N1, N2 : Colliding nucleons
- B1, B2 : Spectator nucleons/clusters
- C₁, C₂ : N, (2N), (3N), (4N) (up to α cluster)

Transition probability

$$W(\text{NBNB} \rightarrow \text{CC}) = \frac{2\pi}{\hbar} |\langle \text{CC} | V | \text{NBNB} \rangle|^2 \delta(E_f - E_i)$$

$$\nu d\sigma \propto |\langle \varphi_1' | \varphi_1^{+\mathbf{q}} \rangle|^2 |\langle \varphi_2' | \varphi_2^{-\mathbf{q}} \rangle|^2 |M|^2 \delta(E_f - E_i) p_{\mathsf{rel}}^2 dp_{\mathsf{rel}} d\Omega$$

 $|M|^2 = |\langle NN|V|NN \rangle|^2$: Matrix elements of NN scattering $\leftarrow (d\sigma/d\Omega)_{NN}$ in medium

In this study, free NN cross sections are adopted.

Similar to Danielewicz et al., NPA533 (1991) 712.

NN collisions with cluster correlations (more explanations)

For each NN collision, cluster formation is considered.

$$\begin{split} & \mathsf{N}_1 + \mathsf{B}_1 \ + \ \mathsf{N}_2 + \mathsf{B}_2 \ \rightarrow \mathsf{C}_1 + \mathsf{C}_2 \\ & W_{i \rightarrow f} = \frac{2\pi}{\hbar} |\langle \mathsf{CC} | V_{NN} | \mathsf{NBNB} \rangle|^2 \delta(E_f - E_i) \end{split}$$

AO, J. Phys. Conf. Ser. 420 (2013) 012103

- Clusters in the final states are represented by placing Gaussian wave packets at the same phase space point.
- Consequently the processes such as the elastic and inelastic scatterings of "Cluster + Nucleon" and "Cluster + Cluster" are automatically taken into account.
- There are many possibilities to from clusters in the final states. Non-orthogonality of the final states should be carefully handled.
- It is also important to consider the process that several clusters form bound light nuclei.

e.g.
$$\alpha + t \rightarrow {}^{7}\text{Li}$$
 (B.E.= -2.5 MeV)

AMD results: Au + Au central collisions at 150 and 250 MeV/nucleon

FOPI data: Reisdorf et al., NPA 612 (1997) 493.

Neutron-proton density diff. (fn of r)

$$4\pi r^2 \left[\frac{A}{N} \rho_n(r) - \frac{A}{Z} \rho_p(r) \right]$$

Radial expansion velocity v_{rad}(r)

Effect remains until late times ⇒ Observable?

N/Z Spectrum Ratio — an observable

2015/06/05 RIKEN 11 / 24

Nucleon distributions in r- and p-spaces, With/without clusters

 132 Sn + 124 Sn collisions

E/A = 300 MeV, b < 1 fm

Bao-An Li, PRL88 (2002) 192701.

Pion ratio π^-/π^+ has been proposed as a good probe of

- symmetry energy at high densities
- ρ_n/ρ_p ratio in the high density region

Production/absorption of Δ and π :

$$N + N \rightarrow N + \Delta$$
$$N + N \leftarrow N + \Delta$$
$$\Delta \rightarrow N + \pi$$
$$\Delta \leftarrow N + \pi$$

Simple expectation: $\pi^{-}/\pi^{+} \approx (N/Z)^{2}$

- First-chance $NN \rightarrow N\Delta \rightarrow NN\pi$
- Chemical equilibrium

Symmetry energy and pions studied by other models

	asy-stiff		asy-soft
IBUU	π^-/π^+	<	π^-/π^+
ImIQMD	π^-/π^+	>	π^-/π^+
pBUU	π^{-}/π^{+}	≈	π^-/π^+

Model predictions do not agree.

- Bao-An Li, PRL 88 (2002) 192701. IBUU
- Ferini et al., PRL 97 (2006) 202301.
- Reisdorf et al., NPA 781 (2007) 459. Data & IQMD
- Z. Xiao et al., PRL 102 (2009) 062502. IBUU04
- Z.Q. Feng and G.M. Jin, PLB 683 (2010) 140. ImIQMD
- Hong and Danielewicz, PRC 90 (2014) 024605. pBUU

• ...

 $(N/Z)^2_{sys} = 2.231$ for the Au + Au system.

- In the data and in some calculations, $\pi^{-}/\pi^{+} > (N/Z)^{2}_{sys}$ at low energies.
- The high density region is less n-rich (N/Z)² < (N/Z)²_{SVS}.

How can this happen?

Relations should be clarified: $S(\rho) \iff \rho_n/\rho_p \iff \Delta^{-}/\Delta^{0}/\Delta^{+}/\Delta^{++} \iff \pi^{-}/\pi^{+}$

Collaboration with Natsumi Ikeno, Yasushi Nara, Akira Ohnishi

Coupled equations for $f_N(\mathbf{r}, \mathbf{p}, t)$, $f_{\Delta}(\mathbf{r}, \mathbf{p}, t)$, $f_{\pi}(\mathbf{r}, \mathbf{p}, t)$

$\frac{\partial f_N}{\partial t} + \frac{\partial h_N}{\partial \mathbf{p}} \cdot \frac{\partial f_N}{\partial \mathbf{r}} -$	$-\frac{\partial h_N[f_N, f_\Delta, f_\pi]}{\partial \mathbf{r}}$	$\cdot \frac{\partial f_N}{\partial \mathbf{p}} = I_N[f_N, f_\Delta, f_\pi]$	$NN \rightarrow NN$
$\frac{\partial f_{\Delta}}{\partial t} + \frac{\partial h_{\Delta}}{\partial \mathbf{p}} \cdot \frac{\partial f_{\Delta}}{\partial \mathbf{r}} -$	$-\frac{\partial h_{\Delta}[f_N, f_{\Delta}, f_{\pi}]}{\partial \mathbf{r}}$	$\frac{\partial f_{\Delta}}{\partial \mathbf{p}} = I_{\Delta}[f_N, f_{\Delta}, f_{\pi}]$	$NN \leftrightarrow N\Delta$
$\frac{\partial f_{\pi}}{\partial t} + \frac{\partial h_{\pi}}{\partial \mathbf{p}} \cdot \frac{\partial f_{\pi}}{\partial \mathbf{r}} -$	$-\frac{\partial h_{\pi}[f_N,f_{\Delta},f_{\pi}]}{\partial \mathbf{r}}\cdot$	$\frac{\partial f_{\pi}}{\partial \mathbf{p}} = I_{\pi}[f_N, f_{\Delta}, f_{\pi}]$	$\Delta \leftrightarrow N\pi$

Assumption: Δ and pion productions are rare (in low-energy collisions).

$$I_N[f_N, f_\Delta, f_\pi] = I_N^{\mathsf{el}}[f_N, 0, 0] + \lambda I'_N[f_N, f_\Delta, f_\pi]$$
$$f_N = f_N^{(0)} + \lambda f_N^{(1)} + \cdots, \qquad f_\Delta = O(\lambda), \qquad f_\pi = O(\lambda)$$

Perturbative treatment of pion production

Assumption: Δ and pion productions are rare (in low-energy collisions).

$$I_N[f_N, f_\Delta, f_\pi] = I_N^{\mathsf{el}}[f_N, 0, 0] + \lambda I'_N[f_N, f_\Delta, f_\pi]$$

$$f_N = f_N^{(0)} + \lambda f_N^{(1)} + \cdots, \qquad f_\Delta = O(\lambda), \quad f_\pi = O(\lambda)$$

Zeroth order equation for f_N

solved by AMD

$$\frac{\partial f_N^{(0)}}{\partial t} + \frac{\partial h_N}{\partial \mathbf{p}} \cdot \frac{\partial f_N^{(0)}}{\partial \mathbf{r}} - \frac{\partial h_N[f_N^{(0)}, 0, 0]}{\partial \mathbf{r}} \cdot \frac{\partial f_N^{(0)}}{\partial \mathbf{p}} = I_N^{\mathsf{el}}[f_N^{(0)}, 0, 0]$$

First order equations for f_{Δ} and f_{π}

solved by JAM for given $f_N^{(0)}$

$$\frac{\partial f_{\Delta}}{\partial t} + \frac{\partial h_{\Delta}}{\partial \mathbf{p}} \cdot \frac{\partial f_{\Delta}}{\partial \mathbf{r}} - \frac{\partial h_{\Delta}[f_N^{(0)}, f_{\Delta}, f_{\pi}]}{\partial \mathbf{r}} \cdot \frac{\partial f_{\Delta}}{\partial \mathbf{p}} = I_{\Delta}[f_N^{(0)}, f_{\Delta}, f_{\pi}]$$
$$\frac{\partial f_{\pi}}{\partial t} + \frac{\partial h_{\pi}}{\partial \mathbf{p}} \cdot \frac{\partial f_{\pi}}{\partial \mathbf{r}} - \frac{\partial h_{\pi}[f_N^{(0)}, f_{\Delta}, f_{\pi}]}{\partial \mathbf{r}} \cdot \frac{\partial f_{\pi}}{\partial \mathbf{p}} = I_{\pi}[f_N^{(0)}, f_{\Delta}, f_{\pi}]$$

AMD + JAM

Send nucleon test particles from AMD to JAM at every 2 fm/c, with corrections for the conservation of baryon number and charge.

JAM: Jet AA Microscopic transport model

Nara, Otuka, Ohnishi, Niita, Chiba, PRC 61 (2000) 024901.

- Has been applied to high-energy collisions (1 ~ 158 A GeV).
- Hadron-Hadron reactions are based on experimental data and the detailed balance.
- No mean field (default)
- s-wave pion production is turned off.

AMD+JAM calculations for ¹³²Sn + ¹²⁴Sn at 300 MeV/nucleon

Akira Ono (Tohoku University)

Influence of clusters and symmetry energy on pion produc

Relation between n/p and Δ^{-}/Δ^{++}

Nucleons in the sphere $\rho(r) \ge \rho_0$ centered at the c.o.m.

$$(N/Z)^2 \equiv \frac{\int_0^\infty N(t)^2 dt}{\int_0^\infty Z(t)^2 dt}$$

N(t), Z(t): Number of nucleons that satisfy the condition.

$$\Delta^{-}/\Delta^{++} \equiv \frac{\int_{0}^{\infty} \mathsf{Rate}(nn \to p\Delta^{-})dt}{\int_{0}^{\infty} \mathsf{Rate}(pp \to n\Delta^{++})dt}$$

Simply expect $\Delta^{-}/\Delta^{++} \approx (N/Z)^{2}$.

 $\Delta^{-}/\Delta^{++} \neq (N/Z)^2 \Rightarrow$ We are not looking at the correct region of nucleons for Δ production.

Relation between n/p and Δ^{-}/Δ^{++}

Nucleon distributions in r- and p-spaces, With/without clusters

Final π^-/π^+

Strong correlation of Δ^-/Δ^{++} to $(N/Z)^2$ almost remains in π^-/π^+ , but it is weakened a little.

• Cluster correlation $\Rightarrow (\pi^{-}/\pi^{+}) \uparrow$

• Stiff
$$S(\rho) \Rightarrow (\pi^-/\pi^+)$$
 \uparrow

Pion spectrum, Coulomb effect

With Coulomb for pions

Without Coulomb for pions

Coulomb acceleration/deceleration of produced pions

- affects the charged pion spectra, but
- has almost no effect on the pion multiplicities and the pion ratio.

	π^{-}	π^+	π^-/π^+
with Coulomb	0.60	0.20	3.00(2)
without Coulomb	0.61	0.20	3.04(2)

AMD+JAM with cluster (asy-soft)

About potentials for Δ and π

• $U_{\tau}^{(*)}$: Isospin(τ)-dependent potential due to the strong interaction

U_C: Coulomb potential

In JAM, reaction thresholds are the same as in free space. Therefore AMD+JAM assumes

$$U_{\tau_1}^{(N)} + U_{\tau_2}^{(N)} = U_{\tau_3}^{(N)} + U_{\tau_4}^{(\Delta)}, \qquad U_{\tau_1}^{(\Delta)} = U_{\tau_3}^{(N)} + U_{\tau_4}^{(\pi)} \qquad \text{for } \tau_1(+\tau_2) = \tau_3 + \tau_4$$

This is satisfied in case

$$U_{\tau}^{(N,\Delta)} = U_0(\mathbf{r}) + \tau U_{\text{sym}}(\mathbf{r}), \qquad U_{\tau}^{(\pi)} = \tau U_{\text{sym}}(\mathbf{r})$$

c.f. pBUU: Hong and Danielewicz, PRC 90 (2014) 024605.

Summary

Observables that reflect the symmetry-energy effects at high densities were studied by AMD combined with JAM for central 132 Sn + 124 Sn collisions at 300 MeV/nucleon.

- If cluster correlation is strong, the high-density effect is reflected almost directly in the n/p spectrum ratio.
- The π^{-}/π^{+} and Δ^{-}/Δ^{++} ratios are related to the $(n/p)^{2}$ ratio in high-density and high-momentum region.

Cluster, $E_{sym}(\rho) \Leftrightarrow (N/Z)^2 \Leftrightarrow \Delta^-/\Delta^{++} \Leftrightarrow \pi^-/\pi^+$

- Selection of high-momentum nucleons: (π^-/π^+)
- Stiff E_{sym} : $(\pi^{-}/\pi^{+}) \downarrow$, but $(\pi^{-}/\pi^{+}) \uparrow$ in late stage
- Cluster correlation: (π^-/π^+)
- Esym effect were stronger without cluster correlations.

Todo:

Other systems.

Improve $NN \rightarrow NN\pi$ cross section near threshold.

