Multifragmentation experiments to simulate neutrino sphere

Jerzy Łukasik

IFJ PAN, Kraków, Poland

- SN1987A
- Fragments from Au+Au, INDRA@GSI
- Fragmentation of exotic beams, ALADIN@GSI
- Simulations for setups@RIKEN
- GEANT4
- Primary generator: UrQMD + Clustering, ${ }^{132} \mathrm{Sn}+{ }^{124} \mathrm{Sn} @ 300 \mathrm{AMeV}$
- 0.5 T magnetic field

RIKEN, June 5-6, 2015

Work supported by Polish National Science Center (NCN),
Contract Nos. UMO-2013/10/M/ST2/00624, UMO-2013/09/B/ST2/04064

Neutrino detection from SN1987A

 spectrum?flux?

What are the properties of matter where the neutrinos are freed?

Different scenarios of fragment formation in HIC

is clustering indeed a low density phenomenon?

Statistical

(SMM: J.P. Bonforf, A.S. Botvina et al.)
Fragments „freezing out" during the system expansion at $\rho \approx 1 / 8-1 / 3 \rho_{\circ}$. Thermal and chemical equilibrium is assumed.
Primary fragments: hot, spherical non-overlapping, non-interacting (except Coulomb)
Problem: too small kinetic energies (extra expansion energy put "by hand")
"Little Big Bang"
(CMD: X. Campi, H. Krivine, E. Plagnol et al.)
Excited, compressed system attains a partial equilibrium.
The self-bound pre-fragments are formed in a hot and dense phase.
Pre-fragments are cooler than the system.
The system of interacting clusters of arbitrary shapes expands.
The asymptotic distribution of spherical fragments reveals the primordial distribution.

At freeze-out : thermal and chemical equilibrium

superposition of 20 events Au+Au @ 15, 30, 60, 150 AMeV, b=4 fm

Peripheral Au+Au @ 40-150 MeV/nucleon (INDRA@GSI)

 Invariant cross sections:
J. Łukasik et al., PLB 566 (03) 76

Peripheral Au+Au @ 40-150 MeV/nucleon (INDRA@GSI) Invariant cross sections:

$$
y \equiv \operatorname{th}^{-1} \beta_{\|}
$$

Peripheral Au+Au @ 40-150 MeV/nucleon (INDRA@GSI) Invariant cross sections:

Rapidity of fragments with atomic number Z

(peripheral collisions)

$\mathrm{Au}+\mathrm{Au}$

transverse velocity distributions and mean transverse energies

No dependence of mean transverse energies of fragments of $3 \leq Z \leq 6$ on the bean energy and their mass.
Surprisingly large value ($\sim 30 \mathrm{MeV}$)
Can it be "statistical" emission from the source of $\mathrm{T}=30 \mathrm{MeV}$?

$A u+A u$

mean transverse energies of "mid-rapidity" fragments in peripheral collisions

Mean transverse energies of "mid-rapidity" fragments in peripheral collisions: experiment + Monte-Carlo

Mean transverse energies of "mid-rapidity" fragments in peripheral collisions: experiment + Monte-Carlo

Important role of the N-N collisions in fragment formation - possibly they trigger the fragment emission. On average one scattered nucleon in the fragment is enough to explain the high and constant value of the mean transverse energies of the fragments.

Fragmentation of ${ }^{107} \mathrm{Sn}$, ${ }^{124} \mathrm{La}$ and ${ }^{124} \mathrm{Sn} @ 600 \mathrm{AMeV}$ ALADIN@GSI

$N / Z \geq 1.14$

88c
C. Sfienti et al. / Nuclear Physics A 749 (2005) 83c-92c

Figure 5. Mass spectra for light fragments with $Z \leq 10$ from the fragmentation of ${ }^{124}$ La (dashed line) and ${ }^{124}$ Sn (full line).

"rise and fall" in projectile fragmentation

Breakup temperatures and the symmetry energy

Albergo temperatures

$$
R \equiv \frac{Y_{1} / Y_{2}}{Y_{3} / Y_{4}}=c \exp \left(\left(\left(B_{1}-B_{2}\right)-\left(B_{3}-B_{4}\right)\right) / T\right) \quad \text { e.g. } \begin{array}{ll}
1 \rightarrow^{6} L i & 2 \rightarrow^{7} L i \\
3 \rightarrow^{3} \mathrm{He} & 4 \rightarrow^{4} \mathrm{He}
\end{array}
$$

Symmetry energy drops down with temperature

Isoscaling coefficients α

$$
\alpha \approx \frac{4 \gamma}{T}\left(\frac{Z_{1}^{2}}{A_{1}^{2}}-\frac{Z_{2}^{2}}{A_{2}^{2}}\right) \text { where } \gamma \rightarrow E_{\text {sym }} \text { coeff. }
$$

Breakup densities from 2-particle correlation (Au+Au @ 1AGeV)

Start, Active coll, KYOTO Trigger, KATANA, NEBULA+Veto, HOD(s), Lanzhou TOF. (Why) do we need those?

Fig. 11 Simulated PID of the TPC based on the performance of the STAR TPC. Comparable performance was achieved in the EOS detector and would be achieved with the SAMURAI TPC.

Why do we need those?

Start
Active coll
KYOTO
KATANA
NEBULA+Veto HOD(s)
Lanzhou TOF
\rightarrow for TOF, trigger, good evt selection
\rightarrow reject non-target coll., beampipe hits, ...
\rightarrow multiplicity trigger, TOF (?)
\rightarrow trigger for evts with $Z<20$, veto for $G G$
\rightarrow TOF for LCP, masses (imp. for central)
\rightarrow TOF for LCP, masses (for mid-central)
\rightarrow TOF for LCP, masses (for mid-central)

Do wee need "beam trigger" ? (...yes) \rightarrow not obvious how to do it with GG

S4102SETUPURQMD

$\begin{gathered} \text { pateramanaer } \end{gathered}$

25.3 \% | 75.4 \%

Hits1=HOD+HOD+NEBULA+KYOTO Hits2=HOD + HOD + NEBULA

Impact Parameter: $4<b<8 \mathrm{fm}$

Geom. Efficiency $\left.\frac{\text { Hits1 }}{\text { TPC tracks }} \right\rvert\, \frac{\text { Hits2 }}{\text { Forw. Exit }}$ 27.9 \% | 70.7 \%

Hits1=HOD+HOD+NEBULA+KYOTO Hits2=HOD+HOD+NEBULA

Impact Parameter: $8<b<12 \mathrm{fm}$

Geom. Efficiency $\left.\frac{\text { Hits1 }}{\text { TPC tracks }} \right\rvert\, \frac{\text { Hits2 }}{\text { Forw. Exit }}$
31.0 \% | 61.6%

Hits1=HOD+HOD+NEBULA+KYOTO Hits2=HOD+HOD+NEBULA

Impact Parameter: $0<b<12 \mathrm{fm}$

Geom. Efficiency

 $\left.\frac{\text { Hits1 }}{\text { TPC tracks }} \right\rvert\, \frac{\text { Hits2 }}{\text { Forw. Exit }}$28.3 \% | 67.2 \%

Hits1=HOD+HOD+NEBULA + KYOTO Hits2=HOD + HOD +NEBULA

23/35

HOD (16 bars x 10 cm) LANZHOU TOF (60 bars $\times 4 \mathrm{~cm}$) NEBULA (30 bars $\times 12 \mathrm{~cm}$)

$\begin{aligned} & \text { Impanat Paxaneer } \\ & 0<b<4 \mathrm{fm} \end{aligned}$

24.1 \% | 68.0 \%

Hits1=HOD+LTOF+NEBULA+KYOTO Hits2=HOD+LTOF+NEBULA

bar \#

Impact Parameter:
$4<b<8 \mathrm{fm}$
Geom. Efficiency $\left.\frac{\text { Hits1 }}{\text { TPC tracks }} \right\rvert\, \frac{\text { Hits2 }}{\text { Forw. Exit }}$
26.0 \% | 63.6 \%

Hits1=HOD+LTOF+NEBULA+KYOTO
Hits2=HOD+LTOF+NEBULA

Impact Parameter:

$8<b<12 \mathrm{fm}$

Geom. Efficiency $\left.\frac{\text { Hits1 }}{\text { TPC tracks }} \right\rvert\, \frac{\text { Hits2 }}{\text { Forw. Exit }}$
28.9 \% | 56.8 \%

Hits1=HOD+LTOF+NEBULA+KYOTO Hits2=HOD+LTOF+NEBULA

Impact Parameter: $0<b<12 \mathrm{fm}$

Geom. Efficiency $\left.\frac{\text { Hits1 }}{\text { TPC tracks }} \right\rvert\, \frac{\text { Hits2 }}{\text { Forw. Exit }}$
$\mathbf{2 6 . 5}$ \% | 61.1 \%
Hits1=HOD+LTOF+NEBULA+KYOTO
Hits2=HOD+LTOF+NEBULA

26/35

$0<b<4 \mathrm{fm}$

25.3 \% | 75.4 \%

Hits1=HOD+HOD+NEBULA+KYOTO Hits2=HOD + HOD + NEBULA

Impact Parameter: $4<b<8 \mathrm{fm}$

Geom. Efficiency $\left.\frac{\text { Hits1 }}{\text { TPC tracks }} \right\rvert\, \frac{\text { Hits2 }}{\text { Forw. Exit }}$ 27.9 \% | 70.7 \%

Hits1=HOD + HOD + NEBULA + KYOTO Hits2=HOD+HOD+NEBULA

Impact Parameter: $8<b<12 \mathrm{fm}$

Geom. Efficiency $\left.\frac{\text { Hits1 }}{\text { TPC tracks }} \right\rvert\, \frac{\text { Hits2 }}{\text { Forw. Exit }}$
31.0 \% | 61.6%

Hits1=HOD+HOD+NEBULA+KYOTO Hits2=HOD+HOD+NEBULA

Impact Parameter: $0<b<12 \mathrm{fm}$

Geom. Efficiency

 $\left.\frac{\text { Hits1 }}{\text { TPC tracks }} \right\rvert\, \frac{\text { Hits2 }}{\text { Forw. Exit }}$28.3 \% | 67.2 \%

Hits1=HOD+HOD+NEBULA + KYOTO Hits2=HOD + HOD +NEBULA

27/35

Rough mass resolution

```
    (* Be = \frac{Au \beta \gamma }{ze}*)
ln[280]:= u = 931.49432(*MeV*);
    mp = 1.007276470 * u;
    Zp = 1;
    Ek = 300(*MeV*);
    Etot = Ek + mp;
    p = Sqrt[ Ek }\mp@subsup{}{}{2}+2\textrm{Ek mp}]
    gamma = 1 + Ek / mp;
    b = p/Etot;
    gam = 1/Sqrt[1-b*b];
    R = p/1000 / Zp (*GeV/ C*);
    dR = 0.02 * R (* }->2% from Aki GeV/C*)
    c = 0.000299792458 (* m/ps *);
    s=4 (* m *);
    ds=0.0;
    dt = 100 (* ps *);
    dAoverA }=\frac{\sqrt{}{d\mp@subsup{s}{}{2}ga\mp@subsup{m}{}{4}\mp@subsup{R}{}{2}+\mp@subsup{b}{}{2}\mp@subsup{c}{}{2}d\mp@subsup{t}{}{2}ga\mp@subsup{m}{}{4}\mp@subsup{R}{}{2}+d\mp@subsup{R}{}{2}\mp@subsup{s}{}{2}}}{R s}*235.5(*% FWHM *
Out[295]= 5.11943 }->\mathrm{ UP tO Z =10
```


S87310URQM

maxZ $\{$ nhit>0 $\}$

3 veto bars $10 \times 40 \times 0.1 \mathrm{~cm} 3$ with 5 mm overlap + 10 multiplicity bars $10 \times 40 \times 1 \mathrm{~cm} 3$ veto bars read out from both sides
multiplicity bars read out from one side $\rightarrow 16$ channels

trigger efficiency [\%] vs b [fm]

$Z>10, Z>20$ and $Z>40$ spots 5 cm behind the exit TPC window, $B=0.5 T, 4 \times 4 \mathrm{~cm} 2$ target Sn+Sn @ 300 AMeV, UrQMD+clustering

problems

- Beam hole - should be reduced
- Area around the beam - requires more segmented detectors
- "Cracks" between plastic bars (use double walls...?)
- Tracking in air - less accurate, precise field maps needed
- Can we adapt the TPC for more peripheral collisions (T~4-5 MeV)?
- ...

summary

- relativistic neutron rich exotic beams needed
- various projectiles for isoscaling and Esym
- high efficiency and mass resolution for temperature extraction
- projectile fragmentation @ non-central collisions to reduce radial flow, to obtain the right temperature range ($4-5 \mathrm{MeV}$) and to get the neutron rich environment
- or spallation-like inverse kinematics reactions
- better coverage around the beam needed, high position resolution for corr. funct.
- neutron measurement for T and Esym
${ }^{107}$ Sn runs 1952-1996, beam trigger

Twenty-five years after supernova 1987A

The string of pearls clumps of matter in an older ring of debris around SN 1987A that are being heated as shock waves and debris from the supernova crash into them. Image: NSA/P Challis and R Kirshner (Harvard Smithsonian CfA)/B Sugerman (STScl).

A wider view of the region around SN 1987A, showing the inner ring and two outer rings. Image: ESA/Hubble and NASA.

