Numerical evaluation of QED contribution to lepton $g-2$

T. Aoyama
KMI, Nagoya University
The 33rd International Symposium on Lattice Field Theory (LATTICE 2015)
July 14-18, 2015, Kobe

Anomalous magnetic moment of lepton

- Electrons and Muons have magnetic moment along their spins, given by

$$
\vec{\mu}=g \frac{e \hbar}{2 m} \vec{s}
$$

It is known that g-factor deviates from Dirac's value ($g=2$), and it is called Anomalous magnetic moment

$$
a_{\ell} \equiv(g-2) / 2
$$

It is much precisely measured for electron and muon.

- Electron $g-2$ is explained almost entirely by QED interaction between electron and photons. It has provided the most stringent test of QED.
- Muon $g-2$ is more sensitive to high energy physics, and thus a window to new physics beyond the standard model.

10th-order project

- Numerical evaluation of the entire 10th order QED contribution to lepton $g-2$ has been conducted by the collaboration with:

Toichiro Kinoshita (Cornell, and UMass Amherst)
Makiko Nio (RIKEN)
Masashi Hayakawa (Nagoya University)
Noriaki Watanabe (Nagoya University)
Katsuyuki Asano (Nagoya University)

Electron $g-2$

figure from the slide by S. Fogwell Hoogerheide at Lepton moments 2014

Anomalous magnetic moment of electron

- Latest measurement by Harvard group by the resonance of cyclotron and spin levels for a single electron in a cylindrical Penning trap:

$$
a_{e}(\mathrm{HV} 06)=0.00115965218085(76) \quad[0.66 \mathrm{ppb}]
$$

Odom, Hanneke, D'Urso, Gabrielse, PRL97, 030801 (2006)

$$
a_{e}(\mathrm{HV} 08)=0.00115965218073(28) \quad[0.24 \mathrm{ppb}]
$$

FIG. 2 (color). Cylindrical Penning trap cavity used to confine a single electron and inhibit spontaneous emission.

- This result is 15 -fold improvement over the previous measurement by the University of Washington group:

$$
\begin{align*}
& a_{e^{-}}(\mathrm{UW} 87)=0.0011596521884(43) \tag{3.7ppb}\\
& a_{e^{+}}(\mathrm{UW} 87)=0.0011596521879(43) \tag{3.7ppb}
\end{align*}
$$

Standard Model prediction of a_{e}

- Contributions to electron $g-2$ within the context of the standard model consist of:

$$
a_{e}=a_{e}(\text { QED })+a_{e}(\text { Hadronic })+a_{e}(\text { Weak })
$$

- QED contribution can be written as

$$
a_{e}(\mathrm{QED})=A_{1}+\frac{A_{2}\left(m_{e} / m_{\mu}\right)+A_{2}\left(m_{e} / m_{\tau}\right)+A_{3}\left(m_{e} / m_{\mu}, m_{e} / m_{\tau}\right)}{\text { mass-dependent contribution }}
$$

- Current status of the standard model prediction is:

$a_{e}($ QED mass-independent $)$	$0.001159652177160(763)$
$a_{e}($ QED mass-dependent $)$	$2.748(2) \times 10^{-12}$
a_{e} (Hadronic)	$1.705(11) \times 10^{-12}$
$a_{e}($ Weak $)$	$0.0297(5) \times 10^{-12}$
$a_{e}($ theory $)$	$0.001159652181643(763)$

[^0]
QED contribution

- QED contributions are evaluated by perturbation theory:

$$
a_{\ell}(\mathrm{QED})=A^{(2)}\left(\frac{\alpha}{\pi}\right)+A^{(4)}\left(\frac{\alpha}{\pi}\right)^{2}+A^{(6)}\left(\frac{\alpha}{\pi}\right)^{3}+A^{(8)}\left(\frac{\alpha}{\pi}\right)^{4}+\cdots
$$

- Up to which order of the QED perturbation theory do we need, to meet the precision of the measurements?

$$
\begin{aligned}
& \left(\frac{\alpha}{\pi}\right)^{4} \simeq 29.1 \times 10^{-12} \\
& \left(\frac{\alpha}{\pi}\right)^{5} \simeq 0.067 \times 10^{-12}
\end{aligned}
$$

the experimental uncertainty

$$
\delta a_{e}(\exp)=0.28 \times 10^{-12}
$$

- Therefore, we need to know $A^{(8)}$ up to $O\left(10^{-3}\right)$, and $A^{(10)}$ up to $O\left(10^{-1}\right)$.

QED contribution: 2nd order term

- 2nd order term comes from 1 Feynman diagram:

$$
A_{1}^{(2)}=\frac{1}{2}
$$

Schwinger, PR73, 416 (1948)

- With this result, the electron $g-2$ up to 2nd order becomes:

$$
a_{e}^{(2)}=0.001161 \ldots
$$

which well explained the observed value in the study of Zeeman splitting of gallium atom by Kusch and Foley in 1947,

$$
a_{e}(\mathrm{KF} 47)=0.00119(5)
$$

QED contribution: 4th order term

- 4th order term comes from 7 Feynman diagrams:

Their contributions are known analytically:

$$
\begin{aligned}
A_{1}^{(4)} & =\frac{197}{144}+\left(\frac{1}{2}-3 \ln 2\right) \zeta(2)+\frac{3}{4} \zeta(3) \\
& =-0.328478965579 \ldots
\end{aligned}
$$

- 1 diagram with muon or tau-lepton loop also contributes to mass-dependent A_{2} terms. Their numerical values are:

$$
\begin{array}{lc}
A_{2}^{(4)}\left(m_{e} / m_{\mu}\right)= & 5.197386 \underline{67}(26) \times 10^{-7} \\
A_{2}^{(4)}\left(m_{e} / m_{\tau}\right)= & 1.837 \underline{98}(34) \times 10^{-9}
\end{array}
$$

where the values of the mass ratios used are:

$$
m_{e} / m_{\mu}=4.83633166(12) \times 10^{-3}, m_{e} / m_{\tau}=2.87592(26) \times 10^{-4}
$$

QED contribution: 6th order term

- 6th order term receives contributions from 72 Feynman diagrams, represented by these five types:

Their contributions are analytically known, after almost 30 years of works that completed in late 1990's. The numerical values are:

$$
\begin{aligned}
A_{1}^{(6)} & =1.181241456 \ldots \\
A_{2}^{(6)}\left(m_{e} / m_{\mu}\right) & =-0.000007373941 \underline{62}(27) \\
A_{2}^{(6)}\left(m_{e} / m_{\tau}\right) & =-0.0000000658 \underline{30}(11) \\
A_{3}^{(6)}\left(m_{e} / m_{\mu}, m_{e} / m_{\tau}\right) & =0.000000000000190 \underline{9}(1)
\end{aligned}
$$

QED contribution: 6th order term

- Numerical evaluation of these 6th order contributions were started in late 1960's. The early results led to:

$$
A_{1}^{(6)}=1.195(26)
$$

The best numerical value of the diagram $M_{6 \mathrm{H}}$ combined with the analytical values of the other diagrams was:

$$
A_{1}^{(6)}=1.181259(40)
$$

Kinoshita, PRL75, 4728 (1995)
which agrees with the analytical result to 5 digits.

- Formulation of the numerical evaluation developed for the 6th order calculation has been extended for application to the 8th order, and the present 10th order calculations.

QED contribution: 8th order term

- There are 891 Feynman diagrams contributing to 8th order term. They are classified into 13 gauge-invariant groups.

- They are mostly evaluated by numerical means. The latest result of the mass-independent term $A_{1}^{(8)}$ is

$$
A_{1}^{(8)}=-1.912 \underline{98}(84)
$$

QED contribution: 8th order term

- Mass-dependent terms $A_{2}^{(8)}\left(m_{e} / m_{\mu}\right), A_{2}^{(8)}\left(m_{e} / m_{\tau}\right)$, and $A_{3}^{(8)}\left(m_{e} / m_{\mu}, m_{e} / m_{\tau}\right)$ are also evaluated numerically:

$$
\begin{aligned}
A_{2}^{(8)}\left(m_{e} / m_{\mu}\right) & =0.0009 \underline{22}(66) \\
A_{2}^{(8)}\left(m_{e} / m_{\tau}\right) & =0.000008 \underline{24}(12) \\
& \rightarrow 0.000007 \underline{38}(12)^{*} \\
A_{3}^{(8)}\left(m_{e} / m_{\mu}, m_{e} / m_{\tau}\right) & =0.00000074 \underline{65}(18)
\end{aligned}
$$

- Recently these terms were evaluated by analytic method in heavy lepton-mass expansion.

$$
\begin{aligned}
A_{2}^{(8)}\left(m_{e} / m_{\mu}\right) & =0.000916197 \underline{703}(373) \\
A_{2}^{(8)}\left(m_{e} / m_{\tau}\right) & =0.000007429 \underline{24}(118) \\
A_{3}^{(8)}\left(m_{e} / m_{\mu}, m_{e} / m_{\tau}\right) & =0.000000746 \underline{87}(28)
\end{aligned}
$$

The agreement of these two values confirmed our numerical results.

QED contribution: 10th order term

- 12672 Feynman diagrams contribute to 10th order term. They are classified into 32 gauge invariant sets within 6 supersets.

QED contribution: 10th order term

- Numerical evaluation of the complete 10th order contribution was reported in 2012 and an updated result was published in 2015.

$$
A_{1}^{(10)}=7 . \underline{795}(336)
$$

Kinoshita and Nio, PRD73, 053007 (2006)
TA, Hayakawa, Kinoshita, Nio, Watanabe, PRD78, 053005 (2008)
TA, Asano, Hayakawa, Kinoshita, Nio, Watanabe, PRD81, 053009 (2010)
TA, Hayakawa, Kinoshita, Nio, PRD78, 113006 (2008); 82, 113004 (2010); 83, 053002 (2011)
83, 053003 (2011); 84, 053003 (2011); 85, 033007 (2012); 85, 093013 (2012)
TA, Hayakawa, Kinoshita, Nio, PRL109, 111807 (2012); PRD91, 033006 (2015)

- Contribution to $A_{1}^{(10)}$ mainly comes from Set V that consists of 6354 vertex diagrams without closed lepton loops.
- Mass-dependent term is also evaluated:

$$
A_{2}^{(10)}\left(m_{e} / m_{\mu}\right)=-0.003 \underline{82}(39)
$$

tau-lepton contribution is negligibly small for the current experimental precision.

QED contribution: 10th order term

- Recently, Set I that consists of 208 diagrams are evaluated (semi-) analytically for mass-dependent and mass-independent contributions.

Baikov, Maier, Marquard, NPB877, 647 (2013)

- Their results of $A_{1}^{(10)}[$ Set I] are consistent with our numerical evaluations:

	Baikov et al.	AHKN, PRL2012
I(a)	0.000471	0.00047094 (6)
I(b)	0.007010	0.0070108 (7)
I(c)	0.023467	0.023468 (2)
$l(d)+I(e)$	0.014094	0.014098 (5)(4)
I(e)	0.010291	0.010296 (4)
$l(f)+l(g)+l(h)$	0.03785_{-3}^{+5}	0.037833 (20)(6)(13)
I(i)	0.01721_{-23}^{+8}	0.01747 (11)
		$\rightarrow 0.017324$ (12) (updated)
I(j)	0.000420_{-16}^{+31}	0.0003975 (18)

Positronium contribution?

- Recently it was addressed that positronium pole gives rise to extra contribution to the vacuum-polarization loop at order α^{5}.

Mishima, arXiv:1311.7109

- It was claimed that the positronium contributes through a specific class of diagram of $O\left(\alpha^{7}\right)$.
- It turns out that one-half of this effect is cancelled by the $e^{-} e^{+}$scattering contribution near threshold, and the remaining half is included in the perturbative calculation of the 10th-order diagram Set l(i).

Melnikov, Vainshtein, and Voloshin, PRD90, 017301 (2014); Eides, PRD90, 057301 (2014)
Fael and Passera, PRD90, 056004 (2014)

- Thus, no additional contribution beyond the perturbative calculation is present.

Set I(i)

Hadronic and electroweak contributions

- Hadronic contribution is mostly derived from experimental data related to hadronic vacuum polarization. We quote the recent evaluations up to next-to-next-to-leading order that lead to:

$$
\begin{aligned}
& \left.a_{e} \text { (had. v.p. }\right)=1.866(10)_{\exp }(5)_{\mathrm{rad}} \times 10^{-12} \\
& a_{e}(\text { had. v.p. NLO })=-0.2234(12)_{\exp }(7)_{\mathrm{rad}} \times 10^{-12} \\
& a_{e}(\text { had. v.p. NNLO })=0.028(1) \times 10^{-12}
\end{aligned}
$$

Kurz, Liu, Marquard, and Steinhauser, PLB734, 144 (2014)
The hadronic light-by-light-scattering (l-by-I) term is given by:

$$
a_{e}\left(\text { had. I-by-I) }=0.035(10) \times 10^{-12}\right.
$$

Prades, de Rafael, and Vainshtein, in Lepton Dipole Moments (2009)

- Electroweak contribution has been obtained from the analytic form up to two-loop effect on the muon $g-2$ adapted for the electron.

$$
a_{e}(\text { weak })=0.0297(5) \times 10^{-12}
$$

- These contributions are small but non-negligible.

Standard model prediction

- Thus, the theoretical prediction of electron $g-2$ is given by:

$$
a_{e}(\text { theory })=a_{e}(\text { QED })+a_{e}(\text { hadronic })+a_{e}(\text { weak })
$$

where

$$
\begin{array}{rlrl}
a_{e}(\text { QED }) & =0.5\left(\frac{\alpha}{\pi}\right) & & (\text { exact }) \\
& -0.328478444002 \underline{55}(22)\left(\frac{\alpha}{\pi}\right)^{2} & & O\left(10^{-18}\right) \\
& +1.181234016 \underline{816}(11)\left(\frac{\alpha}{\pi}\right)^{3} & O\left(10^{-19}\right) \\
& -1.912 \underline{06}(84)\left(\frac{\alpha}{\pi}\right)^{4} & & 0.25 \times 10^{-13} \\
& +7 . \underline{791}(336)\left(\frac{\alpha}{\pi}\right)^{5} & & 0.23 \times 10^{-13} \\
a_{e}(\text { hadronic }) & =1.7 \underline{705}(151) \times 10^{-12} & & 0.16 \times 10^{-13} \\
a_{e}(\text { weak }) & =0.029 \underline{7}(5) \times 10^{-12} & O\left(10^{-15}\right)
\end{array}
$$

Input values to theoretical prediction

- To compare the theoretical prediction with the experiment, the value of the fine structure constant α is needed which is determined by an independent method.
- The best value of such α has been obtained from the determination of h / m_{Rb} by the measurement of recoil velocity of ${ }^{87} \mathrm{Rb}$, through the relation:

$$
\alpha=\left[\frac{2 R_{\infty}}{c} \frac{m_{\mathrm{Rb}}}{m_{e}} \frac{h}{m_{\mathrm{Rb}}}\right]^{1 / 2}
$$

where

$$
\begin{aligned}
h / m_{\mathrm{Rb}} & =4.5913592729(57) \times 10^{-9} \mathrm{~m}^{2} \mathrm{~s}^{-1} & & {\left[1.2 \times 10^{-9}\right] } \\
c & =299792458 \mathrm{~ms}^{-1} & & \text { (exact) } \\
R_{\infty} & =10973731.568539(55) \mathrm{m}^{-1} & & {\left[5.0 \times 10^{-12}\right] } \\
m_{e} & =0.00054857990946(22) \mathrm{amu} & & {\left[4.0 \times 10^{-10}\right] } \\
m_{\mathrm{Rb}} & =86.909180535(10) \mathrm{amu} & & {\left[1.2 \times 10^{-10}\right] }
\end{aligned}
$$

Bouchendira, Cladé, Guellati-Khélifa, Nez, and Biraben, PRL 106, 080801 (2011)
Mohr, Taylor, and Newell, RMP84, 1527 (2012) [CODATA2010]
Mount, Redshaw, and Myers, PRA82, 042513 (2010)
It leads to

$$
\alpha^{-1}(\mathrm{Rb})=137.035999037(91) \quad\left[0.66 \times 10^{-9}\right]
$$

Theoretical prediction of electron $g-2$

- With this α, the theoretical prediction of a_{e} becomes:

$$
\begin{gathered}
a_{e}(\text { theory })=1159652181.643(25)(23)(16)(763) \times 10^{-12} \\
(8 t h)(10 \text { th })(\text { had }+ \text { ew })(\alpha)
\end{gathered}
$$

uncertainty comes from QED 8th order term, 10th order term, hadronic+electroweak, and uncertainty of $\alpha(\mathrm{Rb})$.

- It is in good agreement with the experiment:

$$
a_{e}(\exp)=1159652180.73(28) \times 10^{-12} \text { Hanneke, Fogwell, Gabrielse, PRL 100, } 120801 \text { (2008) }
$$

The difference is:

$$
a_{e}(\exp)-a_{e}(\text { theory })=-0.91(82) \times 10^{-12}
$$

Fine Structure Constant α

- From the measurement and the theory of electron $g-2$, the value of fine-structure constant can be determined.

+(small contributions)
- Newly obtained value of fine-structure constant is:

$$
\alpha^{4} \alpha^{5} \text { had+ew } \exp
$$

$$
(29)(27)(18)(331)
$$

$$
\alpha^{-1}\left(a_{e}\right)=137.0359991570(334) \quad[0.25 \mathrm{ppb}]
$$

TA, Hayakawa, Kinoshita, Nio, Phys. Rev. D 91, 033006 (2015)
c.f.

$$
\begin{aligned}
& \alpha^{-1}(\mathrm{Rb})=137.035999037(91) \\
& \alpha^{-1}(\mathrm{Cs})=137.03600000(110)
\end{aligned}
$$

[0.66ppb] Bouchendira et al., PRL 106, 080801 (2011)
[8.0ppb]

Muon $g-2$

photo from BNL

Muon $g-2$: experiment

- The anomalous magnetic moment of muon has also been studied extensively in both experiment and theory.
- Experiments using muon storage ring started at CERN in 1960's. The latest experiment was conducted at BNL in E821 experiment.

- Latest world average of the measured a_{μ} :

$$
a_{\mu}[\exp]=116592089(63) \times 10^{-11} \quad[0.54 \mathrm{ppm}]
$$

Muon $g-2$: theory

- Contributions to muon $g-2$ may be expressed as:

$$
a_{\mu}=a_{\mu}(\text { QED })+a_{\mu}(\text { hadronic })+a_{\mu}(\text { weak })
$$

where

$$
\begin{aligned}
a_{\mu}(\mathrm{QED}) & =\frac{A_{1}}{\uparrow}+\frac{A_{2}\left(m_{\mu} / m_{e}\right)+A_{2}\left(m_{\mu} / m_{\tau}\right)+A_{3}\left(m_{\mu} / m_{e}, m_{\mu} / m_{\tau}\right)}{\text { mass-dependent contribution }} \\
& \begin{array}{l}
\text { mass-independent contribution } \\
\text { universal to electron and muon }
\end{array}
\end{aligned}
$$

- QED contributions are evaluated by perturbation theory:

$$
A_{i}=A_{i}^{(2)}\left(\frac{\alpha}{\pi}\right)+A_{i}^{(4)}\left(\frac{\alpha}{\pi}\right)^{2}+A_{i}^{(6)}\left(\frac{\alpha}{\pi}\right)^{3}+\ldots, \quad i=1,2,3
$$

QED contribution

- What distinguishes a_{e} (QED) and a_{μ} (QED) is the mass-dependent component.
- Light lepton loop contribution yields large logarithmic enhancement involving a factor $\ln \left(m_{e} / m_{\mu}\right)$.
- Vacuum polarization loop:

$$
\frac{2}{3} \ln \left(m_{\mu} / m_{e}\right)-\frac{5}{9} \simeq 3
$$

- Light-by-light scattering loop:

$$
\frac{2}{3} \pi^{2} \ln \left(m_{\mu} / m_{e}\right) \simeq 35
$$

6th-order l-by-I effect is important.

c.f. Aldins, Kinoshita, Brodsky, Dufner, PRL8, 441 (1969)

- Therefore, the sets of diagrams giving the leading contribution can be identified and were evaluated in the earlier stage.
The entire contribution including non-leading diagrams have been evaluated.

QED contribution

- $a_{\mu}($ QED $)$ is known up to 10th order. Their values contributing to mass-dependent terms are:

$$
A_{2}\left(m_{\mu} / m_{e}\right) \quad A_{2}\left(m_{\mu} / m_{\tau}\right) \quad A_{3}\left(m_{\mu} / m_{e}, m_{\mu} / m_{\tau}\right)
$$

4th	$1.0942583120(83)$	$0.000078079(15)$	-
6th	$22.86838004(23)$	$0.00036070(13)$	$0.00052776(11)$
8th	$132.6852(60)$	$0.042941(2)(53)$	$0.06272(4)$
10th	$742.18(87)$	$-0.068(5)$	$2.011(10)$

Samuel and Li, PRD44, 3935 (1991); Li, Mendel and Samuel, PRD47, 1723 (1993)
Laporta, Nuovo Cim. A106, 675 (1993); Laporta and Remiddi, PLB301, 440 (1993); Czarnecki and Skrzypek, PLB449, 354 (1999)
Laporta, PLB312, 495 (1993); Kinoshita and Nio, PRD70, 113001 (2004); Kurz, Liu, Marquard, Steinhauser, NPB879, 1 (2014) Laporta, PLB328, 522 (1994); Kinoshita and Nio, PRD73, 053007 (2006)

TA, Hayakawa, Kinoshita, Nio, Watanabe, PRD78, 053005 (2008) TA, Asano, Hayakawa, Kinoshita, Nio, Watanabe, PRD81, 053009 (2010)
TA, Hayakawa, Kinoshita, Nio, PRD78, 113006 (2008); 82, 113004 (2010); 83, 053002 (2011) 83, 053003 (2011); 84, 053003 (2011); 85, 033007 (2012); 85, 093013 (2012)

- Together with the mass-independent term A_{1}, we obtain:

$$
\begin{array}{r}
a_{\mu}(\text { QED })=116584718.935(9)(18)(7)(77) \times 10^{-11} \\
(\text { mass ratio })(8 \text { th })(10 \text { th })(\alpha(\mathrm{Rb}))
\end{array}
$$

Hadronic and electroweak contributions

- Recent evaluations of the hadronic vacuum polarization contributions and the hadronic light-by-light-scattering (l-by-I) terms are given by:

$$
\begin{array}{llc}
a_{\mu}(\text { had. v.p. }) & =6949.1(37.2)_{\exp }(21.0)_{\mathrm{rad}} \times 10^{-11} \\
a_{\mu}(\text { had. v.p. } \mathrm{NLO}) & = & -98.4(0.6)_{\exp }(0.4)_{\mathrm{rad}} \times 10^{-11} \\
a_{\mu}(\text { had. v.p. NNLO }) & = & 12.4(0.1) \times 10^{-11} \\
a_{\mu}(\text { had. I-by-I }) & = & 116(40) \times 10^{-11} \\
a_{\mu}(\text { had. I-by-I NLO }) & = & 3(2) \times 10^{-11}
\end{array}
$$

- Electroweak contribution has been evaluated up to 2-loop order:

$$
a_{\mu}(\text { weak }) \quad=\quad 154(2) \times 10^{-11}
$$

Muon $g-2$: comparison with experiment

- The theoretical value of a_{μ} in the standard model is given by:

$$
\begin{gathered}
a_{\mu}(\text { theory })=116591855.03(0.08)(58.56)(2) \times 10^{-11} \\
(\text { QED }) \text { (hadronic) }(\text { weak })
\end{gathered}
$$

- Comparing the theoretical result with the experimental value, we obtain:

$$
a_{\mu}(\text { BNLO6 })-a_{\mu}(\text { theory })=234(87) \times 10^{-11} \quad[2.7 \sigma]
$$

- It is an urgent problem to understand whether this 2.7σ discrepancy between experiment and theory is real.
- If the discrepancy still persists in the future improvement of both measurement and theory, it may be regarded as an indication of new physics beyond the standard model.
- By the complete evaluation of QED 10th order contribution, the QED part has been pinned down precisely for the next experiments. It enables us to concentrate on improving the precision of the hadronic part.

Muon $g-2$: future experiment

- New experiments are being prepared:
- Fermilab P989 experiment using BNL muon storage ring.
B. L. Roberts (Fermilab P989 Collaboration), Nucl. Phys. B Proc. Suppl. 218, 237 (2011)
- J-PARC using ultra-cold muon beam
H. linuma (J-PARC New g-2/EDM Experiment Collaboration), J. Phys. Conf. Ser. 295, 012032 (2011).

Both aim at $\sim 0.1 \mathrm{ppm}\left(12 \times 10^{-11}\right)$ level of uncertainty.

photo from Fermilab

image from KEK

Numerical evaluation

Formulation

- Magnetic property of lepton can be studied through examining its scattering by a static magnetic field.
The amplitude can be represented as:

$$
e \bar{u}\left(p^{\prime \prime}\right)\left[\gamma^{\mu} F_{1}\left(q^{2}\right)+\frac{i}{2 m} \sigma^{\mu \nu} q_{\nu} F_{2}\left(q^{2}\right)\right] u\left(p^{\prime}\right) A_{\mu}^{e}(\vec{q})
$$

- The anomalous magnetic moment is the static limit of the magnetic form factor $F_{2}\left(q^{2}\right)$:

$$
a_{\ell}=F_{2}(0)=Z_{2} M, \quad M=\lim _{q^{2} \rightarrow 0} \operatorname{Tr}\left(P_{\nu}(p, q) \Gamma^{\nu}\right)
$$

where Γ^{ν} is the proper vertex function with the external lepton on the mass shell, and $P_{\nu}(p, q)$ is the magnetic projection operator.

Numerical Approach

- In the following, let us focus on the set of diagrams without lepton loops, called q-type:
- 518 of 891 diagrams contributing to 8th order $A_{1}^{(8)}$ term (Group V),
- 6354 of 12,672 diagrams contributing to 10th order $A_{1}^{(10)}$ term (Set V).

Other sets of diagrams are treated in a similar way.

Numerical Approach

- Procedure:

Step 1. Find distinct set of Feynman diagrams.
Step 2. Construct amplitude in terms of Feynman parametric integral.

Step 3. Construct subtraction terms of UV divergence.

- K-operation

Step 4. Construct subtraction terms of IR divergence.

- R-subtraction of residual mass-renormalization.
- I-subtraction of logarithmic IR divergences.

Step 5. Evaluate the finite amplitude by numerical integration.
Step 6. Carry out residual renormalization to achieve the standard on-shell renormalization.

Diagrams

- Combined uncertainty of contributions from N diagrams grows roughly as \sqrt{N}. Thus it is important to reduce the number of independent integrals.
- A set of vertex diagrams \wedge obtained by inserting an external vertex into each lepton line of self-energy diagram Σ can be related by Ward-Takahashi identity.

$$
\Lambda^{\nu}(p, q) \simeq-\left.q_{\mu} \frac{\partial \Lambda^{\mu}(p, q)}{\partial q_{\nu}}\right|_{q \rightarrow 0}-\frac{\partial \Sigma(p)}{\partial p_{\nu}}
$$

e.g. 4th-order case:

- For Set V diagrams, the number of independent integrals goes from 6354 to 706 by WT sum, further reduced by time-reversal symmetry to 389 .

Diagrams: 389 independent integrals for 10th-order Set V

Construction of Amplitude

- Amplitude is given by an integral over loop momenta according to Feynman-Dyson rule.
- It is converted into Feynman parametric integral over $\left\{z_{i}\right\}$. Momentum integration is carried out analytically that yields

$$
M_{\mathcal{G}}^{(2 n)}=\left(-\frac{1}{4}\right)^{n} \Gamma(n-1) \int(d z)_{\mathcal{G}}\left[\frac{F_{0}}{U^{2} V^{n-1}}+\frac{F_{1}}{U^{3} V^{n-2}}+\cdots\right]
$$

- Integrand is expressed by a rational function of terms called building blocks, $U, V, B_{i j}, A_{j}$, and $C_{i j}$.
- Building blocks are given by functions of $\left\{z_{i}\right\}$, reflecting the topology of diagram, flow of momenta, etc.

topology of loops

flow of external momenta

Subtraction of UV Divergences

- UV divergence occurs when loop momenta in a subdiagram go to infinity. It corresponds to the region of Feynman parameter space $z_{i} \sim \mathcal{O}(\epsilon)$ for $i \in \mathcal{S}$.

- In order to carry out subtraction numerically, the singularities are cancelled point-by-point on Feynman parameter space.

$$
M_{\mathcal{G}}-L_{\mathcal{S}} M_{\mathcal{G} / \mathcal{S}} \quad \longrightarrow \int(d z)_{\mathcal{G}}\left[m_{\mathcal{G}}-\mathbb{K}_{\mathcal{S}} m_{\mathcal{G}}\right]
$$

- The subtraction integrand $\mathbb{K}_{\mathcal{S}} m_{\mathcal{G}}$ is derived from $m_{\mathcal{G}}$ by simple power-counting rule called K-operation.

Cvitanović and Kinoshita, 1974

- By construction, subtraction terms can be factorized into (UV-divergent part of) renormalization constant and lower-order magnetic part.

$$
\int(d z)_{\mathcal{G}}\left[\mathbb{K}_{\mathcal{S}} m_{\mathcal{G}}\right]=L_{\mathcal{S}}^{\mathrm{UV}} M_{\mathcal{G} / \mathcal{S}}
$$

$L_{\mathcal{S}}^{\mathrm{UV}}$ is the leading UV -divergent part of $L_{\mathcal{S}}$. The difference $\left(L_{\mathcal{S}}^{\mathrm{UV}}-L_{\mathcal{S}}\right)$ must be adjusted in later step called residual renormalization.

Subtraction of UV divergence

- K-operation yields UV subtraction terms corresponding to divergent subdiagram \mathcal{S} :
- for a vertex subdiagram,

$$
\mathbb{K}_{\mathcal{S}} M_{\mathcal{G}}=L_{\mathcal{S}}^{\mathrm{UV}_{\mathcal{G}} / \mathcal{S}}
$$

where $L_{\mathcal{S}}^{U V}$ is divergent part of vertex renormalization constant.

- for a self-energy subdiagram,

$$
\mathbb{K}_{\mathcal{S}} M_{\mathcal{G}}=\delta m_{\mathcal{S}}^{\mathrm{UV}} M_{\mathcal{G} / \mathcal{S}\left(i^{\star}\right)}+B_{\mathcal{S}}^{\mathrm{UV}} M_{\mathcal{G} /[\mathcal{S}, i]}
$$

where $\delta m_{\mathcal{S}}^{\mathrm{UV}}$ and $B_{\mathcal{S}}^{\mathrm{UV}}$ are divergent parts of mass and wave-function renormalization constants.

- When there are more than one divergent subdiagram, all subdivergences are identified by Zimmermann's forest formula. UV-finite amplitude $M_{\mathcal{G}}^{R}$ is given by

$$
M_{\mathcal{G}}^{\mathrm{R}}=M_{\mathcal{G}}+\sum_{f} \Pi_{\mathcal{S} \in f}\left(-\mathbb{K}_{\mathcal{S}}\right) M_{\mathcal{G}}
$$

where a forest f is a set of divergent subdiagrams without partial-overlapping.

IR subtraction Scheme

- A diagram may have IR divergence when some momenta of photon go to zero. It is really divergent by "enhancer" leptons that are close to on-shell by kinematical constraint.

- We adopt subtraction approach for these divergences point-by-point on Feynman parameter space.
- There are two types of sources of IR divergence in $M_{\mathcal{G}}$ associated with a self-energy subdiagram. To handle these divergences, we introduce two subtraction operations:
- R-subtraction to remove the residual self-mass term

$$
\mathbb{R}_{\mathcal{S}} M_{\mathcal{G}}={\widetilde{\delta m_{\mathcal{S}}}} M_{\mathcal{G} / \mathcal{S}\left(i^{*}\right)}
$$

- l-subtraction to subtract remaining logarithmic IR divergence

$$
\mathbb{I}_{\mathcal{S}} M_{\mathcal{G}}=\tilde{L}_{\mathcal{G} / \mathcal{S}(k)} M_{\mathcal{S}}
$$

Nested IR singularities

- Nested IR divergences emerge when there are more than one self-energy subdiagram account for IR singularity.
- These divergences are dealt with the combination of I-/R-subtractions, conducted in a forest-like structure, which we call
"annotated forests".
a forest with the annotation that each subdiagram in the forest accounts to either of I - and R -subtractions.
- IR-finite amplitude $\Delta M_{\mathcal{G}}$ is given by

$$
\Delta M_{\mathcal{G}}=\sum_{\tilde{F}}\left(-\mathbb{I}_{\mathcal{S}_{j}}\right) \cdots\left(-\mathbb{R}_{\mathcal{S}_{k}}\right) \cdots M_{\mathcal{G}}^{\mathbb{R}}
$$

where $\mathcal{S}_{j}, \mathcal{S}_{k} \in \tilde{f}$: annotated forest.

Subtraction terms: Example

- Consider a 10th-order diagram $M_{\times 253}$:

- M×253 have
- three self-energy subdiagrams $\left(\mathcal{S}_{1}, \mathcal{S}_{2}, \mathcal{S}_{3}\right)$,

- two vertex subdiagrams $\left(\mathcal{S}_{4}, \mathcal{S}_{5}\right)$.

UV Forests

- According to Zimmermann's forest formula, 23 UV divergent parts and corresponding subtraction terms are identified as:

forest
subtraction
expression

$$
\text { Sman } \quad\left\{S_{2}\right\}
$$

$$
\begin{array}{cll}
\left\{\mathcal{S}_{1}\right\} & \mathbb{K}_{28} & -d m_{16}^{\mathrm{UV}} M_{2 *}-B_{16}^{\mathrm{UV}} M_{2} \\
\left\{\mathcal{S}_{2}\right\} & \mathbb{K}_{57} & -d m_{4 a}^{\mathrm{UV}} M_{6 b\left(2^{*}\right)}-B_{4 a}^{\mathrm{UV}} M_{6 b} \\
\left\{\mathcal{S}_{3}\right\} & \mathbb{K}_{33} & -d m_{2} M_{42\left(2^{*}\right)}-B_{2}^{\mathrm{UV}} M_{42} \\
\left\{\mathcal{S}_{4}\right\} & \mathbb{K}_{56} & -L_{2}^{\mathrm{UV}} M_{30} \\
\left\{\mathcal{S}_{1}, \mathcal{S}_{2}\right\} & \mathbb{K}_{28^{1}} \mathbb{K}_{57} & +d m_{4 a}^{U V V} d m_{4 b\left(1^{*}\right)} M_{2 *}+B_{4 a}^{\mathrm{UV}} d m_{4 b}^{U V} M_{2^{*}}+B_{4 a}^{\mathrm{UV}} B_{4 b}^{\mathrm{UV}} M_{2}
\end{array}
$$

and 15 other forests involving either \mathcal{S}_{4} or \mathcal{S}_{5}.

"Annotated forests" for IR subtraction

- 11 IR subtraction terms are identified by combination of self-energy type subdiagrams with distinction of l - or R-subtraction operation as:

	annotation	subtraction	expression
$\sin +\frac{1}{2}$	$\mathcal{G} \rightarrow M, \mathcal{S}_{1} \rightarrow d m$	\mathbb{R}_{2-8}	$-d m_{16}^{\mathrm{R}} M_{2}$ *
	$\mathcal{G} \rightarrow M, \mathcal{S}_{2} \rightarrow d m$	\mathbb{R}_{567}	$-d m_{4 a}^{\mathrm{R}} M_{6 b\left(2^{*}\right)}^{\mathrm{R}}$
	$\mathcal{G} \rightarrow M, \mathcal{S}_{1} \rightarrow d m, \mathcal{S}_{2} \rightarrow d m$	$\mathbb{R}_{2-8} \mathbb{R}_{567}$	$+d m_{4 a}^{\mathrm{R}} d m_{4 b\left(1^{*}\right)}^{\mathrm{R}} M_{2 *}$
	$\mathcal{G} \rightarrow I, \mathcal{S}_{1} \rightarrow M$	\mathbb{I}_{19}	$-M_{16}^{\mathrm{R}} L_{2}^{\mathrm{R}}$
/ammanm	$\mathcal{G} \rightarrow I, \mathcal{S}_{2} \rightarrow M$	$\mathbb{1}_{123489}$	$-M_{4 a}^{\mathrm{R}} L_{6 b(2)}^{\mathrm{R}}$
man	$\mathcal{G} \rightarrow I, \mathcal{S}_{3} \rightarrow M$	$\mathbb{I}_{12456789}$	$-M_{2} L_{42(2)}^{R}$
	$\mathcal{G} \rightarrow I, \mathcal{S}_{1} \rightarrow I, \mathcal{S}_{2} \rightarrow M$	$\mathbb{I}_{19} \mathbb{I}_{2348}$	$+M_{4 a}^{\mathrm{R}} L_{4 b 1}^{\mathrm{R}} L_{2}^{\mathrm{R}}$
forsizs	$\mathcal{G} \rightarrow I, \mathcal{S}_{1} \rightarrow I, \mathcal{S}_{3} \rightarrow M$	$\mathbb{I}_{19} \mathbb{I}_{245678}$	$+M_{2} L_{6 c(1)}^{\mathrm{R}} L_{2}^{\mathrm{R}}$
max mix	$\mathcal{G} \rightarrow I, \mathcal{S}_{1} \rightarrow M, \mathcal{S}_{2} \rightarrow d m$	$\mathbb{I}_{19} \mathbb{R}_{567}$	$+d m_{4 a}^{\mathrm{R}} M_{4 b\left(1^{*}\right)}^{\mathrm{R}} L_{2}^{\mathrm{R}}$
an mis	$\mathcal{G} \rightarrow I, \mathcal{S}_{3} \rightarrow M, \mathcal{S}_{2} \rightarrow d m$	$\mathbb{1}_{12489} \mathbb{R}_{567}$	$+M_{2} d m_{4 a}^{\mathrm{R}} L_{4 b 2\left(2^{*}\right)}^{\mathrm{R}}$
	$\mathcal{G} \rightarrow I, \mathcal{S}_{1} \rightarrow I, \mathcal{S}_{3} \rightarrow M, \mathcal{S}_{2} \rightarrow d m$	$\mathbb{I}_{19} \mathbb{I}_{248} \mathbb{R}_{567}$	$-M_{2} d m_{4 a}^{\mathrm{R}} L_{2}^{\mathrm{R}} L_{2}^{\mathrm{R}}$

Amplitude as a finite integral

- Finite amplitude $\Delta M_{\mathcal{G}}$ free from both UV and IR divergences is obtained by Feynman-parameter integral as:

$$
\begin{aligned}
& \Delta M_{\mathcal{G}}= \int(d z)\left[F_{\mathcal{G}} \quad \begin{array}{c}
\text { unrenormalized } \\
\text { amplitude }
\end{array}\right. \\
&+\sum_{f} \prod_{\mathcal{S} \in f}\left(-\mathbb{K}_{\mathcal{S}}\right) F_{\mathcal{G}} \longleftarrow \text { UV subtraction terms } \\
&\left.+\sum_{\tilde{f}}\left(-\mathbb{I}_{\mathcal{S}_{i}}\right) \cdots\left(-\mathbb{R}_{\mathcal{S}_{j}}\right) \cdots F_{\mathcal{G}}\right] \\
& \tilde{f}: \begin{array}{l}
\text { annombinatann's forests: } \\
\text { combinations of self-energy subdiagrams } \\
\text { with distinction of } I-/ R \text {-subtractions. }
\end{array}
\end{aligned}
$$

Automation

- We need to evaluate a large number of Feynman diagrams. (For 10th order Set V, there are 389 independent integrals.)
- Each diagram may have large number of UV and IR subtraction parts, to each of which the subtraction integrand should be prepared.
e.g.

15 UV-divergent parts and 119 IR-divergent parts.
X072

- Identification of divergent parts is diagram-based, and suitable for automated treatment.
- It should be error-prone by writing numerical integration code for these huge integrals by hand. We developed an automated code-generating program.

Automation

- "gencodeN" takes a single-line information that represents a diagram, and generates numerical integration code in FORTRAN.
- "gencode N " is tailored so that it can process any order of diagrams. This enables us to check the validity of the code generator by lower order diagrams.

Numerical integration

- The amplitude is expressed as a multi-dimensional integral. ($D=14-1$ for 10th-order diagrams)
- The integrand is a huge rational function. The size of integrand is $\mathcal{O}\left(10^{5}\right)$ lines of FORTRAN code per diagram.
- Numerical integration is performed by an adaptive-iterative Monte-Carlo method, VEGAS.
- Integral over D-dimensional region $I^{D}=[0,1]^{D}$ is evaluated from N independent samples of a random variable that is distributed according to $\rho(x)$ within I^{D}.

adaptive grid adjustment during iterations

Numerical precision

- Divergences are dealt with subtractive scheme point-by-point in the parameter space. Severe digit-deficiency problem may occur.
- IEEE754 double-precision floating point format:

resolution is 2^{-53} (16-17 digits).
- Some diagrams with a number of self-energy subdiagrams have linear or worse IR divergences, that may exhibit unstable convergence on integration with insufficient numerical precision.
e.g.

Numerical precision

- A remedy is to employ extended precision arithmetic (quadruple, etc). IEEE754 quadruple precision binary floating-point format (binary 128):

figure taken from Wikipedia
This provides approximately 34 significant decimal digits. At present, there is no hardware support in commodity facilities.
- Another option is to express a floating-point value a by a set of double-precision data
a_{0}, a_{1}, \ldots as:

$$
a=a_{0}+\epsilon a_{1}+\epsilon^{2} a_{2}+\cdots, \quad \epsilon=2^{-53}
$$

Arithmetics over a are translated to those over a's, by passing rounding-off residues to lower order components based on Knuth and Dekker algorithm.
We use "double-double" (and also "quadruple-double") of qd library
Bailey, Hida, Li. c.f. http://crd.lbl.gov/ddhbailey/mpdist/
It is implemented by software, and approx. 20 times costly compared to double precision arithmetic.

Facilities

- Numerical calculations are mainly conducted on supercomputers in RIKEN.
- RIKEN Super Combined Cluster (RSCC)

12 TFlops, Apr. 2005 - Jun. 2009

- RIKEN Integrated Cluster of Clusters (RICC) 96 TFlops, Oct. 2009 - Mar. 2015
- (new) RIKEN Hokusai GreatWave 1 PFlops, June. 2015 -
- Several other facilities are used e.g. workstations in Nagoya University, and KMI φ cluster computing system.

photo from RIKEN

Numerical values of Set V integrals

- Thus, the numerical evaluation of 389 integrals of Set V yields the results as follows, where each statistical uncertainty due to VEGAS Monte-Carlo integration is lower than certain criterion:

Diagram	Vertex repr.	No. of subtr. terms	Value (Error) including n_{F}	No. of iterations with 10^{9} sampling points per iteration
X001	abacbdcede	47	-0.1724 (91)	20
X002 ${ }^{\text {dd }}$	abaccddebe	47	-5.9958 (333)	13
X003	abacdbcede	19	-0.1057 (52)	10
X004 ${ }^{\text {dd }}$	abacdcdebe	71	5.1027 (339)	9
X005	abacddbece	43	1.1112 (168)	20
X006	abacddcebe	59	-5.2908 (245)	9
X007	abbcadceed	47	-3.4592 (254)	25
X008 ${ }^{\text {d }}$	abbccddeea	47	-16.5070 (289)	11
X009	abbcdaceed	19	-3.1069 (71)	24
X010 ${ }^{\text {dd }}$	abbcdcdeea	83	11.2644 (342)	124
X011 ${ }^{\text {dd }}$	abbcddaeec	43	6.0467 (338)	22
X012 ${ }^{\text {dd }}$	abbcddceea	67	-9.3328 (267)	26
X013	abcabdecde	7	-1.3710 (31)	2
X014	abcacdedbe	31	0.8727 (42)	10
X015	abcadbecde	2	2.1090 (8)	2
X016	abcadcedbe	2	-0.9591 (7)	2
X017	abcaddebce	6	0.5146 (13)	20
X018	abcaddecbe	6	0.0309 (13)	20
X019	abcbadeced	31	1.2965 (48)	10
X020 ${ }^{\text {dd }}$	abcbcdedea	134	-8.1900 (318)	43
X021	abcbdaeced	11	-0.2948 (15)	10
X022	abcbdcedea	79	0.8892 (226)	22
X023	abcbddeaec	27	0.4485 (55)	25
X024	abcbddecea	75	-6.0902 (246)	23
X025	abccadeebd	39	-0.7482 (194)	20
X026 ${ }^{\text {dd }}$	abccbdeeda	95	-7.8258 (277)	8
X027	abccdaeebd	15	-2.3260 (54)	13
X028 ${ }^{\text {dd }}$	abccdbeeda	71	4.5663 (342)	49
X029 ${ }^{\text {dd }}$	abccddeeab	35	6.9002 (233)	
$X 030{ }^{\text {dd }}$	abccddeeba	67	-12.6225 (342)	$34 \quad 48 / 55$

Residual renormalization

- We adopt the standard on-shell renormalization to ensure that the coupling constant α and the electron mass m_{e} are the ones measured by experiments.
- The sum of all these finite integrals defined by K-operation and I-/R-subtraction operations does not correspond to physical contribution to g-2.
- The difference is adjusted by the step called the residual renormalization.

$$
\begin{aligned}
a_{e} & =M(\text { bare })-\text { on-shell renormalization } \\
& =\underbrace{[M(\text { bare })-\text { UV subtr. }- \text { IR subtr. }]}
\end{aligned}
$$

Finite integral ΔM

$$
+\underbrace{[- \text { on-shell renorm. }+ \text { UV subtr. }+ \text { IR subtr. }]}_{\text {finite residual renormalization }}
$$

Deriving residual renormalization

- Sum up over 389 integrals of 10 th order Set V , which requires analytic sum of $\sim 16,000$ symbolic terms.
- The physical contribution from 10th order Set V is thus given by:

$$
\begin{aligned}
& A_{1}^{(10)}[\text { Set } \mathrm{V}]=\Delta M_{10}[\text { Set } \mathrm{V}] \\
& +\Delta M_{8}\left(-7 \Delta B_{2}\right) \\
& +\Delta M_{6}\left\{-5 \Delta L B_{4}+20\left(\Delta L B_{2}\right)^{2}\right\} \\
& +\Delta M_{4}\left\{-3 \Delta L B_{6}+24 \Delta L B_{4} \Delta L B_{2}-28\left(\Delta L B_{2}\right)^{3}+2 \Delta L_{2 *} \Delta d m_{4}\right\} \\
& +M_{2}\left\{-\Delta L B_{8}+8 \Delta L B_{6} \Delta L B_{2}-28 \Delta L B_{4}\left(\Delta L B_{2}\right)^{2}\right. \\
& \left.+4\left(\Delta L B_{4}\right)^{2}+14\left(\Delta L B_{2}\right)^{4}+2 \Delta d m_{6} \Delta L_{2^{*}}\right\} \\
& +M_{2} \Delta d m_{4}\left(-16 \Delta L_{2^{*}} \Delta B_{2}+\Delta L_{4^{*}}-2 \Delta L_{2^{*}} \Delta d m_{2^{*}}\right),
\end{aligned}
$$

- The terms with Δ are the finite nth order quantities.
- $\Delta M_{n}, M_{2}$: finite magnetic moment.
- ΔB_{n} : sum of vertex and wave-function renormalization constants.
- $\Delta d m_{n}$: mass-renormalization constants.
- $\Delta L_{n}^{*}, \Delta d m_{n}^{*}: *$ denotes mass insertion.

Numerical evaluation of Set V

- The sum of these 389 integrals is

$$
\Delta M_{10}=3.468
$$

With the auxiliary quantities required for the residual renormalization listed below,

Integral	Value (Error)	Integral	Value (Error)
ΔM_{8}	$1.73812(85)$	$\Delta L_{4^{*}}$	$-0.459051(62)$
ΔM_{6}	$0.4258135(30)$	$\Delta L_{2 *}$	-0.75
ΔM_{4}	$0.030833612 \cdots$	$\Delta d m_{6}$	$-2.340815(55)$
M_{2}	0.5	$\Delta d m_{4}$	$1.9063609(90)$
$\Delta L B_{8}$	$2.0504(86)$	$\Delta d m_{2^{*}}$	-0.75
ΔB_{6}	$0.100801(43)$		
$\Delta L B_{4}$	$0.0279171(61)$		
$\Delta \mid B_{2}$	0.75		

we obtain the 10 th order contribution from Set $\mathrm{V}, A_{1}^{(10)}$:

$$
A_{1}^{(10)}[\text { Set } \mathrm{V}]=8.726(336)
$$

- Numerical evaluation of other sets are carried out in a similar manner. Next table shows the summary of these results.

Numerical values of 10th order contribution from 32 subsets

Set	n_{F}	universalA_{1}	$\begin{gathered} \text { electron } \\ A_{2}\left(m_{e} / m_{\mu}\right) \end{gathered}$	muon		
				$A_{2}\left(m_{\mu} / m_{e}\right)$	$A_{2}\left(m_{\mu} / m_{\tau}\right)$	$A_{3}\left(m_{\mu} / m_{e}, m_{\mu} / m_{\tau}\right)$
I(a)	1	0.00047094 (6)	0.00000028 (1)	22.566973 (3)	0.000038 (0)	0.017312 (1)
I(b)	9	0.0070108 (7)	0.00000188 (1)	30.667091 (3)	0.000269 (0)	0.020179 (1)
I(c)	9	0.023468 (2)	0.00000267 (1)	5.141395 (1)	0.000397 (0)	0.002330 (0)
I(d)	6	0.0038017 (5)	0.00000546 (1)	8.8921 (11)	0.000388 (0)	0.024487 (2)
1(e)	30	0.010296 (4)	0.00000160 (1)	-0.9312 (24)	0.000232 (0)	0.002370 (0)
1(f)	3	0.0075684 (20)	0.00004754 (1)	3.685049 (90)	0.002162 (0)	0.023390 (2)
I(g)	9	0.028569 (6)	0.00002445 (1)	2.60787 (72)	0.001698 (0)	0.002729 (1)
I(h)	30	0.001696 (13)	-0.00001014 (3)	-0.5686 (11)	0.000163 (1)	0.001976 (3)
1(i)	105	0.01747 (11)	0.00000167 (2)	0.0871 (59)	0.000024 (0)	0
I(j)	6	0.0003975 (18)	0.00000241 (6)	-1.263 72 (14)	0.000168 (1)	0.000110 (5)
II(a)	24	-0.109 495 (23)	-0.000 73769 (95)	-70.4717 (38)	-0.018 882 (8)	-0.290 853 (85)
$11(\mathrm{~b})$	108	-0.473 559 (84)	-0.000 64562 (95)	-34.7715 (26)	-0.035615 (20)	-0.127 369 (60)
$11(\mathrm{c})$	36	-0.116 489 (32)	-0.000 38025 (46)	-5.38575 (99)	-0.016 348 (14)	-0.040 800 (51)
$11(\mathrm{~d})$	180	-0.243 00 (29)	-0.000 09817 (41)	0.4972 (65)	-0.007673(14)	0
$11(\mathrm{e})$	180	-1.3449(10)	-0.000 4650 (40)	3.265 (12)	-0.038 06 (13)	0
$11(f)$	72	-2.4336(15)	-0.005 868 (39)	-77.465 (12)	-0.26723 (73)	-0.502 95 (68)
III(a)	300	2.12733 (17)	0.007511 (11)	109.116 (33)	0.283000 (32)	0.89140 (44)
$111(\mathrm{~b})$	450	3.32712 (45)	0.002794 (1)	11.9367 (45)	0.143600 (10)	0
III(c)	390	4.921 (11)	0.00370 (36)	7.37 (15)	0.1999 (28)	0
IV	2072	-7.7296 (48)	-0.01136 (7)	-38.79 (17)	-0.4357 (25)	0
V	6354	8.726 (336)	0	0	0	0
$\mathrm{VI}(\mathrm{a})$	36	1.04132 (19)	0.006152 (11)	629.141 (12)	0.24610 (18)	2.3590 (18)
$\mathrm{VI}(\mathrm{b})$	54	1.34699 (28)	0.0017789 (35)	181.1285 (51)	0.096522 (93)	0.19476 (26)
$\mathrm{VI}(\mathrm{c})$	144	-2.5289 (28)	-0.005 953 (59)	-36.58(12)	-0.2601 (28)	-0.5018 (89)
$\mathrm{VI}(\mathrm{d})$	492	1.8467 (70)	0.001276 (76)	-7.92 (60)	0.0818 (17)	0
$\mathrm{VI}(\mathrm{e})$	48	-0.4312 (7)	-0.000 750 (8)	-4.32 (14)	-0.035 94 (32)	-0.1122 (24)
$\mathrm{VI}(\mathrm{f})$	180	0.7703 (22)	0.000033 (7)	-38.16 (15)	0.04347 (85)	0.0659 (31)
$\mathrm{VI}(\mathrm{g})$	480	-1.5904 (63)	-0.000 497 (29)	6.96 (48)	-0.044 51 (96)	0
$\mathrm{VI}(\mathrm{h})$	630	0.1792 (39)	0.000045 (9)	-8.55 (23)	0.00485 (46)	0
VI(i)	60	-0.0438 (12)	-0.000 326 (1)	-27.34 (12)	-0.00345 (33)	-0.0027 (11)
VI(j)	54	-0.2288(18)	-0.000 127 (13)	-25.505 (20)	-0.011 49 (33)	-0.016 03 (58)
$\mathrm{VI}(\mathrm{k})$	120	0.6802 (38)	0.0000156 (40)	97.123 (62)	0.00217 (16)	0
sum	12672	7.795 (336)	-0.003 82 (39)	742.18 (87)	-0.068 (5)	2.011 (10)

Summary and discussion

Feynman diagrams exhibited at Fermilab Art Gallery by Edward Tufte
Photo from The Work of Edward Tufte and Graphics Press

Summary and discussion

- For the electron $g-2$, the experimental precision has reached to 0.24 ppb , while the perturbative contribution of QED up to 10 th order $(\alpha / \pi)^{5}$ has now been available. The experiment and the theory of a_{e} agrees to $O\left(10^{-12}\right)$.
- From $a_{e}(\exp)$ and a_{e} (theory), the most precise determination of the fine structure constant α is obtained, with the precision of 0.25 ppb .
- New measurement is being prepared with new apparatus for the positron $g-2$ by the Harvard group. Further improvement on the experiment is expected.
- The largest source of theoretical uncertainty at present is the 8th order QED term. Improvement on the numerical evaluation of 8th term as well as 10th order term is continuously in progress.
- Improvement on the non-QED α is crucial as the input of the theoretical prediction. Comparison of α from different determinations provides another stringent test of QED.

Summary and discussion

- For the muon $g-2$, the discrepancy between the experiment and the theory is being observed by 2.7σ. It is an urgent problem to understand whether it persists or not with the improvement of both experiment and theory.
- New experiments are being prepared at Fermilab and J-PARC, both aiming at 0.1 ppm level.
- The QED contribution is dominant but it has been known precisely enough for the next experiments, with the complete evaluation of the 10th order term. We can now concentrate on the hadronic contribution, the present largest source of theoretical uncertainty by 0.6 ppm .
- Lattice QCD will be a promising tool for the evaluation of the hadronic contribution.
This will be the subject of the next speaker, Izubuchi-san, and of a number of parallel talks in this conference.

Summary and discussion

- Do we need 6-loop contribution?
- There are 202,770 vertex Feynman diagrams contributing to 12th order. The Feynman-parametric integral involves 16 dimensional numerical integration, each combinatorially more complicated than those of 10 th order.
- Consider that $\left(\frac{\alpha}{\pi}\right)^{6} \sim O\left(10^{-16}\right)$, and the present uncertainty of a_{e} is of $O\left(10^{-13}\right)$, it is not likely that 12th-order contribution is needed for the time being.
- For the muon $g-2$, a large numerical factor is expected from the electron loops. The leading contribution will come from three insertions of 2nd-order vacuum-polarization loop into the 6th-order light-by-light diagram. It is estimated as:

$$
\begin{aligned}
& \sim A_{2}^{(6)}\left(m_{\mu} / m_{e} ; \text { l-by-I }\right) \times\left\{\frac{2}{3} \ln \left(\frac{m_{\mu}}{m_{e}}\right)-\frac{5}{9}\right\}^{3} \times 10 \times\left(\frac{\alpha}{\pi}\right)^{6} \\
& \sim 0.08 \times 10^{-11}
\end{aligned}
$$

It is larger than the uncertainty of 10th order term. A crude evaluation may be desirable.

Thank you.

Backup

Step-by-step example with 4th-order diagrams

- Let us illustrate the steps by simpler case, e.g. 4th-order diagrams.
- There are 7 diagrams of 4th order; 6 of them have no closed lepton loop (q-type).
- They are WT-sumed into 2 self-energy-like diagrams, 4a and 4b.

Step 1: Amplitude

- Introduce Feynman parameters z_{1}, \ldots, z_{5} to propagators:

- Anomalous magnetic moment $M_{4 a}$ is converted analytically into the form:

$$
M_{4 a}=\int(d z) \mathcal{F}_{4 a}=\int(d z)\left[\frac{E_{0}+C_{0}}{U^{2} V}+\frac{N_{0}+Z_{0}}{U^{2} V^{2}}+\frac{N_{1}+Z_{1}}{U^{3} V}\right]
$$

where integrand and building blocks are given as follows:

$$
\begin{aligned}
& (d z)=d z_{1} d z_{2} d z_{3} d z_{4} d z_{5} \delta\left(1-z_{12345}\right) \\
& B_{11}=z_{235}, B_{12}=z_{35}, B_{13}=-z_{2}, \\
& B_{23}=z_{14}, B_{22}=z_{1345}, B_{33}=z_{124}, \\
& U=z_{2} B_{12}+z_{14} B_{11} \\
& A_{i}=1-\left(z_{1} B_{1 i}+z_{2} B_{2 i}+z_{3} B_{3 i}\right) / U, \\
& G=z_{1} A_{1}+z_{2} A_{2}+z_{3} A_{3}, V=z_{123}-G, \\
& z_{i j k} \cdots=z_{i}+z_{j}+z_{k}+\cdots .
\end{aligned}
$$

$$
\begin{aligned}
E_{0}= & 8\left(2 A_{1} A_{2} A_{3}-A_{1} A_{2}-A_{1} A_{3}-A_{2} A_{3}\right) \\
C_{0}= & -24 Z_{4} Z_{5} / U \\
N_{0}= & G\left(E_{0}-8\left(2 A_{2}-1\right)\right) \\
z_{0}= & 8 z_{1}\left(-A_{1}+A_{2}+A_{3}+A_{1} A_{2}+A_{1} A_{3}-A_{2} A_{3}\right) \\
& +8 z_{2}\left(1-A_{1} A_{2}+A_{1} A_{3}-A_{2} A_{3}+2 A_{1} A_{2} A_{3}\right) \\
& +8 z_{3}\left(A_{1}+A_{2}-A_{3}-A_{1} A_{2}+A_{1} A_{3}+A_{2} A_{3}\right) \\
N_{1}= & 8 G\left(B_{12}\left(2-A_{3}\right)+2 B_{13}\left(1-2 A_{2}\right)+B_{23}\left(2-A_{1}\right)\right) \\
Z_{1}= & -8 z_{1}\left(B_{12}\left(1-A_{3}\right)+B_{13}+B_{23} A_{1}\right) \\
& +8 z_{2}\left(B_{12}\left(1-A_{3}\right)-4 B_{13} A_{2}+B_{23}\left(1-A_{1}\right)\right) \\
& -8 z_{3}\left(B_{12} A_{3}+B_{13}+B_{23}\left(1-A_{1}\right)\right)
\end{aligned}
$$

Step 2: UV subtraction

- $M_{4 a}$ is not well-defined - it has UV divergences when the loop momenta goes to infinity.

Step 2: UV subtraction

- $M_{4 a}$ is not well-defined - it has UV divergences when the loop momenta goes to infinity.
- This corresponds to a region of z_{i} 's when all z_{i} on the loop vanish simultaneously.

Step 2: UV subtraction

- We prepare an integral which has the same UV divergent profile by K-operation, and perform subtraction point-by-point on the integrand.

Step 2: UV subtraction

- We prepare an integral which has the same UV divergent profile by K-operation, and perform subtraction point-by-point on the integrand.

- Then the finite part of the anomalous magnetic moment $\Delta M_{4 a}$ is obtained by the integral:

$$
\Delta M_{4 a}=\int(d z)\left[\mathcal{F}_{4 a}-\mathbb{K}_{12} \mathcal{F}_{4 a}-\mathbb{K}_{23} \mathcal{F}_{4 a}\right]
$$

Step 3: IR subtraction

- $M_{4 b}$ has IR divergence as well, from vanishing of virtual photon momentum.
- This logarithmic IR divergence is handled by an integral which is constructed by l-subtraction.
- Then the finite part of the anomalous magnetic moment $\Delta M_{4 b}$ is obtained by the integral:

Step 4: Residual renormalization

- Finite part of amplitude is given in terms of integral with appropriate UV and/or IR subtraction terms.

$$
\begin{aligned}
& \Delta M_{4 a}=\int(d z)\left[\mathcal{F}_{4 a}-\mathbb{K}_{12} \mathcal{F}_{4 a}-\mathbb{K}_{23} \mathcal{F}_{4 a}\right] \\
& \Delta M_{4 b}=\int(d z)\left[\mathcal{F}_{4 b}-\mathbb{K}_{22} \mathcal{F}_{4 b}-\mathbb{I}_{13} \mathcal{F}_{4 b}\right]
\end{aligned}
$$

Step 4: Residual renormalization

- Finite part of amplitude is given in terms of integral with appropriate UV and/or IR subtraction terms.

$$
\begin{aligned}
\Delta M_{4 a} & =\int(d z)\left[\mathcal{F}_{4 a}-\mathbb{K}_{12} \mathcal{F}_{4 a}-\mathbb{K}_{23} \mathcal{F}_{4 a}\right] \\
& =M_{4 a}-\widehat{L}_{2} M_{2}-\widehat{L}_{2} M_{2} \\
\Delta M_{4 b} & =\int(d z)\left[\mathcal{F}_{4 b}-\mathbb{K}_{22} \mathcal{F}_{4 b}-\mathbb{I}_{13} \mathcal{F}_{4 b}\right] \\
& =M_{4 b}-\left(\delta m_{2} M_{2^{\star}}+\widehat{B}_{2} M_{2}\right)-\widetilde{L}_{2} M_{2}
\end{aligned}
$$

- Subtraction terms are analytically factorized into products of lower-order quantities.

Step 4: Residual renormalization

- Finite part of amplitude is given in terms of integral with appropriate UV and/or IR subtraction terms.

$$
\begin{aligned}
\Delta M_{4 a} & =\int(d z)\left[\mathcal{F}_{4 a}-\mathbb{K}_{12} \mathcal{F}_{4 a}-\mathbb{K}_{23} \mathcal{F}_{4 a}\right] \\
& =M_{4 a}-\widehat{L}_{2} M_{2}-\widehat{L}_{2} M_{2} \\
\Delta M_{4 b} & =\int(d z)\left[\mathcal{F}_{4 b}-\mathbb{K}_{22} \mathcal{F}_{4 b}-\mathbb{I}_{13} \mathcal{F}_{4 b}\right] \\
& =M_{4 b}-\left(\delta m_{2} M_{2^{\star}}+\widehat{B}_{2} M_{2}\right)-\widetilde{L}_{2} M_{2}
\end{aligned}
$$

- Subtraction terms are analytically factorized into products of lower-order quantities.
- Standard on-shell renormalization is denoted by

$$
\begin{aligned}
a^{(4)}[\text { q-type }]= & M_{4 a}-2 L_{2} M_{2} \\
& +M_{4 b}-\left(\delta m_{2} M_{2^{\star}}+B_{2} M_{2}\right)
\end{aligned}
$$

- By substitution, magnetic moment is given

$$
a^{(4)}[\text { q-type }]=\left(\Delta M_{4 a}+\Delta M_{4 b}\right)-\Delta L B_{2} M_{2}
$$

where $\Delta L B_{2}$ is finite part of $L_{2}+B_{2}$.

[^0]: * Uncertainty comes from that of fine-structure constant α.

