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Anomalous magnetic moment of lepton

◮ Electrons and Muons have magnetic moment along their spins, given by

~µ = g
e~

2m
~s

It is known that g-factor deviates from Dirac’s value (g = 2), and it is called

Anomalous magnetic moment

aℓ ≡ (g − 2)/2

It is much precisely measured for electron and muon.

◮ Electron g−2 is explained almost entirely by QED interaction between

electron and photons.

It has provided the most stringent test of QED.

◮ Muon g−2 is more sensitive to high energy physics, and thus a window to

new physics beyond the standard model.
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10th-order project

◮ Numerical evaluation of the entire 10th order QED contribution

to lepton g−2 has been conducted by the collaboration with:

Toichiro Kinoshita (Cornell, and UMass Amherst)

Makiko Nio (RIKEN)

Masashi Hayakawa (Nagoya University)

Noriaki Watanabe (Nagoya University)

Katsuyuki Asano (Nagoya University)
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Electron g−2

figure from the slide by S. Fogwell Hoogerheide at Lepton moments 2014



Anomalous magnetic moment of electron

◮ Latest measurement by Harvard group by the resonance of cyclotron and

spin levels for a single electron in a cylindrical Penning trap:

ae(HV06) = 0.001 159 652 180 85 (76) [0.66ppb]
Odom, Hanneke, D’Urso, Gabrielse, PRL97, 030801 (2006)

ae(HV08) = 0.001 159 652 180 73 (28) [0.24ppb]
Hanneke, Fogwell, Gabrielse, PRL100, 120801 (2008)

Hanneke, Fogwell Hoogerheide, Gabrielse, PRA83, 052122 (2011)
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FIG. 2 (color). Cylindrical Penning trap cavity used to confine

a single electron and inhibit spontaneous emission.

◮ This result is 15-fold improvement over the previous measurement by the

University of Washington group:

ae−(UW87) = 0.001 159 652 188 4 (43) [3.7ppb]

ae+(UW87) = 0.001 159 652 187 9 (43) [3.7ppb]
Van Dyck, Schwinberg, Dehmelt, PRL59, 26 (1987)

3/55



Standard Model prediction of ae

◮ Contributions to electron g−2 within the context of the standard model

consist of:

ae = ae(QED) + ae(Hadronic) + ae(Weak)

◮ QED contribution can be written as

ae(QED) = A1 + A2(me/mµ) + A2(me/mτ ) + A3(me/mµ,me/mτ )
mass-dependent contribution

◮ Current status of the standard model prediction is:

ae(QED mass-independent) 0.001 159 652 177 160 (763)

ae(QED mass-dependent) 2.748 (2)× 10−12

ae(Hadronic) 1.705 (11)× 10−12

ae(Weak) 0.0297 (5)× 10−12

ae(theory) 0.001 159 652 181 643 (763)

∗ Uncertainty comes from that of fine-structure constant α.
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QED contribution

◮ QED contributions are evaluated by perturbation theory:

aℓ(QED) = A
(2)
(α
π

)
+ A

(4)
(α
π

)2

+ A
(6)
(α
π

)3

+ A
(8)
(α
π

)4

+ · · ·

◮ Up to which order of the QED perturbation theory do we need, to meet the

precision of the measurements?

(α
π

)4

≃ 29.1 × 10−12,
(α
π

)5

≃ 0.067 × 10−12,

the experimental uncertainty

δae(exp) = 0.28 × 10−12.

◮ Therefore, we need to know A(8) up to O(10−3), and A(10) up to O(10−1).
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QED contribution: 2nd order term

◮ 2nd order term comes from 1 Feynman diagram:

A
(2)
1 =

1

2
Schwinger, PR73, 416 (1948)

◮ With this result, the electron g−2 up to 2nd order becomes:

a
(2)
e = 0.001 161 . . .

which well explained the observed value in the study of Zeeman splitting of

gallium atom by Kusch and Foley in 1947,

ae(KF47) = 0.001 19 (5)
Kusch and Foley, PR72, 1256 (1947); PR74, 250 (1948)
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QED contribution: 4th order term

◮ 4th order term comes from 7 Feynman diagrams:

Their contributions are known analytically:

A
(4)
1 =

197

144
+

(
1

2
− 3 ln 2

)
ζ(2) +

3

4
ζ(3)

= −0.328 478 965 579 . . .
Petermann, Helv.Phys.Acta 30, 407 (1957)

Sommerfield, PR107, 328 (1957)

◮ 1 diagram with muon or tau-lepton loop also contributes to mass-dependent

A2 terms. Their numerical values are:

A
(4)
2 (me/mµ) = 5.197 386 67 (26)× 10

−7

A
(4)
2 (me/mτ ) = 1.837 98 (34)× 10

−9

Elend, PL20, 682 (1966)

Samuel and Li, PRD44, 3935 (1991); 46, 4782(E) (1993); Li, Mendel, and Samuel, PRD47, 1723 (1993)

Passera, J.Phys.G31, R75 (2005)

where the values of the mass ratios used are:
me/mµ = 4.836 331 66 (12)× 10−3, me/mτ = 2.875 92 (26)× 10−4.

Mohr, Taylor Newell, Rev.Mod.Phys.84, 1527 (2012) [CODATA2010]
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QED contribution: 6th order term

◮ 6th order term receives contributions from 72 Feynman diagrams,

represented by these five types:

Their contributions are analytically known, after almost 30 years of works

that completed in late 1990’s. The numerical values are:

A
(6)
1 = 1.181 241 456 . . .

A
(6)
2 (me/mµ) = −0.000 007 373 941 62 (27)

A
(6)
2 (me/mτ ) = −0.000 000 065 830 (11)

A
(6)
3 (me/mµ,me/mτ ) = 0.000 000 000 000 190 9 (1)

Magnaco and Remiddi, Nuovo Cim.A60, 519 (1969)

Barbieri, Remiddi, PLB49, 468 (1974); Barbieri, Caffo, and Remiddi, PLB57, 460 (1975)

Levine, Remiddi, and Roskies, PRD20, 2068 (1979); Laporta and Remiddi, PLB265, 182 (1991); 390, 390 (1995)

Laporta, PRD47, 4793 (1993); PLB343, 421 (1995)

Laporta and Remiddi, PLB379, 283 (1996)

Laporta, Nuovo Cim.A106, 675 (1993); Laporta and Remiddi, PLB301, 440 (1993)
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QED contribution: 6th order term

◮ Numerical evaluation of these 6th order contributions were started in late

1960’s. The early results led to:

A
(6)
1 = 1.195 (26)

Kinoshita and Cvitanović, PRD10, 4007 (1974)

cf. Levine and Wright, PRD8, 3171 (1973)

The best numerical value of the diagram M6H combined with the analytical

values of the other diagrams was:

A
(6)
1 = 1.181 259 (40)

Kinoshita, PRL75, 4728 (1995)

which agrees with the analytical result to 5 digits.

◮ Formulation of the numerical evaluation developed for the 6th order

calculation has been extended for application to the 8th order, and the

present 10th order calculations.

9/55



QED contribution: 8th order term

◮ There are 891 Feynman diagrams contributing to 8th order term. They are

classified into 13 gauge-invariant groups.

I(a) I(b) I(c) I(d) II(a) II(c)II(b)

III IV(a) IV(b) IV(c) IV(d) V

◮ They are mostly evaluated by numerical means. The latest result of the

mass-independent term A
(8)
1 is

A
(8)
1 = −1.912 98 (84)

Caffo, Turrini, Remiddi, PRD30, 483 (1984)

Remiddi, Sorella, Lett.Nuovo Cim.44, 231 (1985)

Kinoshita and Lindquist, PRD27, 867 (1983); PRD27, 877 (1987);

PRD27, 886 (1983); PRD39, 2407 (1989); PRD42, 636 (1990)

Kinoshita and Nio, PRL90, 021803 (2003)

Kinoshita and Nio, PRD73, 013003 (2006)

TA, Hayakawa, Kinoshita, Nio, PRL99, 110406 (2007); PRD77, 053012 (2008)

TA, Hayakawa, Kinoshita, Nio, PRL109, 111807 (2012)

TA, Hayakawa, Kinoshita, Nio, PRD91, 033006 (2015)
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QED contribution: 8th order term

◮ Mass-dependent terms A
(8)
2 (me/mµ), A

(8)
2 (me/mτ ), and

A
(8)
3 (me/mµ,me/mτ ) are also evaluated numerically:

A
(8)
2 (me/mµ) = 0.000 922 (66)

A
(8)
2 (me/mτ ) = 0.000 008 24 (12)

→0.000 007 38 (12)∗

A
(8)
3 (me/mµ,me/mτ ) = 0.000 000 746 5 (18)

TA, Hayakawa, Kinoshita, Nio, PRL109, 111807 (2012)

(∗ after correcting the typo found in the literature)

◮ Recently these terms were evaluated by analytic method in heavy

lepton-mass expansion.

A
(8)
2 (me/mµ) = 0.000 916 197 070 3 (373)

A
(8)
2 (me/mτ ) = 0.000 007 429 24 (118)

A
(8)
3 (me/mµ,me/mτ ) = 0.000 000 746 87 (28)

Kurz, Liu, Marquard, Steinhauser, NPB879, 1 (2014)

The agreement of these two values confirmed our numerical results.
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QED contribution: 10th order term

◮ 12 672 Feynman diagrams contribute to 10th order term.

They are classified into 32 gauge invariant sets within 6 supersets.
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QED contribution: 10th order term

◮ Numerical evaluation of the complete 10th order contribution was reported

in 2012 and an updated result was published in 2015.

A
(10)
1 = 7.795 (336)

Kinoshita and Nio, PRD73, 053007 (2006)

TA, Hayakawa, Kinoshita, Nio, Watanabe, PRD78, 053005 (2008)

TA, Asano, Hayakawa, Kinoshita, Nio, Watanabe, PRD81, 053009 (2010)

TA, Hayakawa, Kinoshita, Nio, PRD78, 113006 (2008); 82, 113004 (2010); 83, 053002 (2011)

83, 053003 (2011); 84, 053003 (2011); 85, 033007 (2012); 85, 093013 (2012)

TA, Hayakawa, Kinoshita, Nio, PRL109, 111807 (2012); PRD91, 033006 (2015)

◮ Contribution to A
(10)
1 mainly comes from Set V that consists of 6354 vertex

diagrams without closed lepton loops.

◮ Mass-dependent term is also evaluated:

A
(10)
2 (me/mµ) = −0.003 82 (39)

tau-lepton contribution is negligibly small for the current experimental

precision.
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QED contribution: 10th order term

◮ Recently, Set I that consists of 208 diagrams are evaluated (semi-)

analytically for mass-dependent and mass-independent contributions.

Baikov, Maier, Marquard, NPB877, 647 (2013)

I(a) I(b) I(c) I(d) I(e)

I(f) I(g) I(h) I(i) I(j)

◮ Their results of A
(10)
1 [Set I] are consistent with our numerical evaluations:

Baikov et al. AHKN, PRL2012

I(a) 0.000 471 0.000 470 94 (6)
I(b) 0.007 010 0.007 010 8 (7)
I(c) 0.023 467 0.023 468 (2)
I(d) + I(e) 0.014 094 0.014 098 (5)(4)
I(e) 0.010 291 0.010 296 (4)

I(f) + I(g) + I(h) 0.037 85+5
−3

0.037 833 (20)(6)(13)

I(i) 0.017 21+8
−23

0.017 47 (11)

→ 0.017 324 (12) (updated)

I(j) 0.000 420+31
−16

0.000 397 5 (18)
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Positronium contribution?

◮ Recently it was addressed that positronium pole gives rise to extra

contribution to the vacuum-polarization loop at order α5.

Mishima, arXiv:1311.7109

Fael and Passera, PRD90, 056004 (2014)positronium

◮ It was claimed that the positronium contributes through a specific class of

diagram of O(α7). Hayakawa, arXiv:1403.0416

◮ It turns out that one-half of this effect is cancelled by the e−e+ scattering

contribution near threshold, and the remaining half is included in the

perturbative calculation of the 10th-order diagram Set I(i).

Melnikov, Vainshtein, and Voloshin, PRD90, 017301 (2014); Eides, PRD90, 057301 (2014)

Fael and Passera, PRD90, 056004 (2014)

Braun, Zh.Eksp.Teor.Fiz 54, 1220 (1968); Barbieri, Christillin, and Remiddi, PRA8, 2266 (1973)

◮ Thus, no additional contribution beyond the perturbative

calculation is present.

Set I(i)
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Hadronic and electroweak contributions

◮ Hadronic contribution is mostly derived from experimental data related to

hadronic vacuum polarization. We quote the recent evaluations up to

next-to-next-to-leading order that lead to:

ae(had. v.p.) = 1.866 (10)exp(5)rad × 10
−12

ae(had. v.p. NLO) = −0.223 4 (12)exp(7)rad × 10
−12

ae(had. v.p. NNLO) = 0.028 (1)× 10
−12

Nomura and Teubner, NPB867, 236 (2013)

Kurz, Liu, Marquard, and Steinhauser, PLB734, 144 (2014)

The hadronic light-by-light-scattering (l-by-l) term is given by:

ae(had. l-by-l) = 0.035 (10)× 10
−12

Prades, de Rafael, and Vainshtein, in Lepton Dipole Moments (2009)

◮ Electroweak contribution has been obtained from the analytic form up to

two-loop effect on the muon g−2 adapted for the electron.

ae(weak) = 0.029 7 (5)× 10
−12

Fujikawa, Lee, and Sanda, PRD6, 2923 (1972)

Czarnecki, Krause, and Marciano, PRL76, 3267 (1996)

Knecht, Peris, Perrottet, and de Rafael, JHEP11, 003 (2002)

Czarnecki, Marciano, and Vainshtein, PRD67, 073006 (2003); 73, 119901(E) (2006)

◮ These contributions are small but non-negligible.
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Standard model prediction

◮ Thus, the theoretical prediction of electron g−2 is given by:

ae(theory) = ae(QED) + ae(hadronic) + ae(weak)

where

ae(QED) = 0.5
(α
π

)
(exact)

− 0.328 478 444 002 55 (22)
(α
π

)2

O(10
−18)

+ 1.181 234 016 816 (11)
(α
π

)3

O(10
−19)

− 1.912 06 (84)
(α
π

)4

0.25 × 10
−13

+ 7.791 (336)
(α
π

)5

0.23 × 10
−13

ae(hadronic) = 1.705 6 (151)× 10
−12

0.16 × 10
−13

ae(weak) = 0.029 7 (5)× 10
−12

O(10
−15)
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Input values to theoretical prediction

◮ To compare the theoretical prediction with the experiment, the value of the

fine structure constant α is needed which is determined by an independent

method.

◮ The best value of such α has been obtained from the determination of

h/mRb by the measurement of recoil velocity of 87Rb, through the relation:

α =

[
2R∞

c

mRb

me

h

mRb

]1/2

where

h/mRb= 4.591 359 272 9 (57)× 10−9 m2s−1 [1.2 × 10−9]

c = 299 792 458 ms−1 (exact)

R∞ = 10 973 731.568 539 (55) m−1 [5.0 × 10−12]

me = 0.000 548 579 909 46 (22) amu [4.0 × 10−10]

mRb = 86.909 180 535 (10) amu [1.2 × 10−10]
Bouchendira, Cladé, Guellati-Khélifa, Nez, and Biraben, PRL 106, 080801 (2011)

Mohr, Taylor, and Newell, RMP84, 1527 (2012) [CODATA2010]

Mount, Redshaw, and Myers, PRA82, 042513 (2010)

It leads to

α−1(Rb) = 137.035 999 037 (91) [0.66 × 10
−9]
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Theoretical prediction of electron g−2

◮ With this α, the theoretical prediction of ae becomes:

ae(theory)= 1 159 652 181.643 (25)(23)(16)(763)× 10
−12

(8th)(10th)(had+ew)(α)

uncertainty comes from QED 8th order term, 10th order term,

hadronic+electroweak, and uncertainty of α(Rb).

◮ It is in good agreement with the experiment:

ae(exp) = 1 159 652 180.73 (28)× 10−12
Hanneke, Fogwell, Gabrielse, PRL 100, 120801 (2008)

The difference is:

ae(exp)− ae(theory) = −0.91 (82)× 10−12
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Fine Structure Constant α

◮ From the measurement and the theory of electron g−2, the value of

fine-structure constant can be determined.

ae = A(2)
(α
π

)
+ A(4)

(α
π

)2

+ A(6)
(α
π

)3

+ A(8)
(α
π

)4

+ A(10)
(α
π

)5

+ · · ·

+(small contributions)

Theoretical calculations

Experimental value

◮ Newly obtained value of fine-structure constant is:

α−1(ae) = 137.035 999 1570 (334) [0.25ppb]
TA, Hayakawa, Kinoshita, Nio, Phys. Rev. D 91, 033006 (2015)

c.f.

α−1
(Rb) = 137.035 999 037 (91) [0.66ppb]

Bouchendira et al., PRL 106, 080801 (2011)

α−1
(Cs) = 137.036 000 00 (110) [8.0ppb]

Wicht, et al., Phys. Scr. T102, 82 (2002)
Gerginov, et al., PRA 73, 032504 (2006)

α4 α5 had+ew exp
(29) (27) (18) (331)

20/55



Muon g−2

photo from BNL



Muon g−2: experiment

◮ The anomalous magnetic moment of muon has also been studied

extensively in both experiment and theory.

◮ Experiments using muon storage ring started at CERN in 1960’s. The latest

experiment was conducted at BNL in E821 experiment.

 100  150  200  250  300  350  400

(aµ - 11659000) x 10-10

Theory
Experiment

BNL average
BNL 2001 µ-BNL 2000 µ+BNL 1999 µ+BNL 1998 µ+

BNL 1997 µ+

CERN average

CERN µ-
CERN µ+

◮ Latest world average of the measured aµ:

aµ[exp] = 116 592 089 (63)× 10
−11

[0.54ppm]

Bennett, et al., Phys. Rev. D73, 072003 (2006)

Roberts, Chinese Phys. C 34, 741 (2010)
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Muon g−2: theory

◮ Contributions to muon g−2 may be expressed as:

aµ = aµ(QED) + aµ(hadronic) + aµ(weak)

where

aµ(QED) = A1 + A2(mµ/me) + A2(mµ/mτ ) + A3(mµ/me,mµ/mτ )

mass-dependent contribution

mass-independent contribution
universal to electron and muon

◮ QED contributions are evaluated by perturbation theory:

Ai = A
(2)
i

(α
π

)
+ A

(4)
i

(α
π

)2

+ A
(6)
i

(α
π

)3

+ . . . , i = 1, 2, 3
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QED contribution

◮ What distinguishes ae(QED) and aµ(QED) is the mass-dependent

component.

◮ Light lepton loop contribution yields large logarithmic enhancement involving

a factor ln (me/mµ).

◮ Vacuum polarization loop:

2

3
ln(mµ/me)−

5

9
≃ 3.

µ

e

◮ Light-by-light scattering loop:

2

3
π2

ln(mµ/me) ≃ 35.

6th-order l-by-l effect is important.

c.f. Aldins, Kinoshita, Brodsky, Dufner, PRL8, 441 (1969)

µ

e

◮ Therefore, the sets of diagrams giving the leading contribution can be

identified and were evaluated in the earlier stage.

The entire contribution including non-leading diagrams have been evaluated.
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QED contribution
◮ aµ(QED) is known up to 10th order. Their values contributing to

mass-dependent terms are:

A2(mµ/me) A2(mµ/mτ ) A3(mµ/me,mµ/mτ )

4th 1.094 258 3120 (83) 0.000 078 079 (15) —

6th 22.868 380 04 (23) 0.000 360 70 (13) 0.000 527 76 (11)

8th 132.685 2 (60) 0.042 941 (2)(53) 0.062 72 (4)

10th 742.18 (87) −0.068 (5) 2.011 (10)

Samuel and Li, PRD44, 3935 (1991); Li, Mendel and Samuel, PRD47, 1723 (1993)

Laporta, Nuovo Cim. A106, 675 (1993); Laporta and Remiddi, PLB301, 440 (1993); Czarnecki and Skrzypek, PLB449, 354 (1999)

Laporta, PLB312, 495 (1993); Kinoshita and Nio, PRD70, 113001 (2004); Kurz, Liu, Marquard, Steinhauser, NPB879, 1 (2014)

Laporta, PLB328, 522 (1994); Kinoshita and Nio, PRD73, 053007 (2006)

TA, Hayakawa, Kinoshita, Nio, Watanabe, PRD78, 053005 (2008)

TA, Asano, Hayakawa, Kinoshita, Nio, Watanabe, PRD81, 053009 (2010)

TA, Hayakawa, Kinoshita, Nio, PRD78, 113006 (2008); 82, 113004 (2010); 83, 053002 (2011)

83, 053003 (2011); 84, 053003 (2011); 85, 033007 (2012); 85, 093013 (2012)

◮ Together with the mass-independent term A1, we obtain:

aµ(QED) = 116 584 718.935 (9) (18) (7) (77)× 10
−11

(mass ratio)(8th)(10th)(α(Rb))
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Hadronic and electroweak contributions

◮ Recent evaluations of the hadronic vacuum polarization contributions and

the hadronic light-by-light-scattering (l-by-l) terms are given by:

aµ(had. v.p.) = 6949.1 (37.2)exp(21.0)rad × 10
−11

aµ(had. v.p. NLO) = − 98.4 (0.6)exp(0.4)rad × 10
−11

aµ(had. v.p. NNLO) = 12.4 (0.1)× 10
−11

aµ(had. l-by-l) = 116 (40)× 10
−11

aµ(had. l-by-l NLO) = 3 (2)× 10
−11

Hagiwara, Liao, Martin, Nomura, Teubner, J.Phys.G38, 085003 (2011)

Kurz, Liu, Marquard, and Steinhauser, PLB734, 144 (2014)

Prades, de Rafael, and Vainshtein, in Lepton Dipole Moments (2009)

Colangelo, Hoferichter, Nyffeler, Passera, Stoffer, PLB735, 90 (2014)

◮ Electroweak contribution has been evaluated up to 2-loop order:

aµ(weak) = 154 (2)× 10
−11

Fujikawa, Lee, and Sanda, PRD6, 2923 (1972)

Czarnecki, Krause, and Marciano, PRL76, 3267 (1996)

Knecht, Peris, Perrottet, and de Rafael, JHEP11, 003 (2002)

Czarnecki, Marciano, and Vainshtein, PRD67, 073006 (2003); 73, 119901(E) (2006)
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Muon g−2: comparison with experiment

◮ The theoretical value of aµ in the standard model is given by:

aµ(theory) = 116 591 855.03 (0.08) (58.56) (2)× 10
−11

(QED)(hadronic)(weak)

◮ Comparing the theoretical result with the experimental value, we obtain:

aµ(BNL06)− aµ(theory) = 234 (87)× 10
−11 [2.7σ]

◮ It is an urgent problem to understand whether this 2.7σ discrepancy

between experiment and theory is real.

◮ If the discrepancy still persists in the future improvement of both

measurement and theory, it may be regarded as an indication of new

physics beyond the standard model.

◮ By the complete evaluation of QED 10th order contribution, the QED part

has been pinned down precisely for the next experiments. It enables us to

concentrate on improving the precision of the hadronic part.
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Muon g−2: future experiment

◮ New experiments are being prepared:

◮ Fermilab P989 experiment using BNL muon storage ring.
B. L. Roberts (Fermilab P989 Collaboration), Nucl. Phys. B Proc. Suppl. 218, 237 (2011)

◮ J-PARC using ultra-cold muon beam
H. Iinuma (J-PARC New g-2/EDM Experiment Collaboration), J. Phys. Conf. Ser. 295, 012032 (2011).

Both aim at ∼ 0.1ppm (12 × 10−11) level of uncertainty.

photo from Fermilab image from KEK
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Numerical evaluation



Formulation

◮ Magnetic property of lepton can be studied through examining its scattering

by a static magnetic field.

The amplitude can be represented as:

eū(p′′)

[
γµ

F1(q
2) +

i

2m
σµν

qν F2(q
2)

]
u(p′)A

e
µ(~q)

p′p′′

q

◮ The anomalous magnetic moment is the static limit of the magnetic form

factor F2(q
2):

aℓ = F2(0) = Z2M, M = lim
q2→0

Tr(Pν(p, q)Γ
ν)

where Γν is the proper vertex function with the external lepton on the mass

shell, and Pν(p, q) is the magnetic projection operator.
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Numerical Approach

Set V

◮ In the following, let us focus on the set of diagrams without lepton loops,
called q-type:

◮ 518 of 891 diagrams contributing to 8th order A
(8)
1 term (Group V),

◮ 6354 of 12,672 diagrams contributing to 10th order A
(10)
1 term (Set V).

Other sets of diagrams are treated in a similar way.
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Numerical Approach

◮ Procedure:

Step 1. Find distinct set of Feynman diagrams.

Step 2. Construct amplitude in terms of Feynman parametric

integral.

Step 3. Construct subtraction terms of UV divergence.

• K-operation

Step 4. Construct subtraction terms of IR divergence.

• R-subtraction of residual mass-renormalization.

• I-subtraction of logarithmic IR divergences.

Step 5. Evaluate the finite amplitude by numerical integration.

Step 6. Carry out residual renormalization

to achieve the standard on-shell renormalization.
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Diagrams

◮ Combined uncertainty of contributions from N diagrams grows roughly as√
N. Thus it is important to reduce the number of independent integrals.

◮ A set of vertex diagrams Λ obtained by inserting an external vertex

into each lepton line of self-energy diagram Σ can be related by

Ward-Takahashi identity.

Λν(p, q) ≃ −qµ
∂Λµ(p, q)

∂qν

∣∣∣∣
q→0

− ∂Σ(p)

∂pν
.

e.g. 4th-order case:

◮ For Set V diagrams, the number of independent integrals goes

from 6354 to 706 by WT sum,

further reduced by time-reversal symmetry to 389.
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Diagrams: 389 independent integrals for 10th-order Set V
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Construction of Amplitude

◮ Amplitude is given by an integral over loop momenta according to

Feynman-Dyson rule.

◮ It is converted into Feynman parametric integral over {zi}. Momentum

integration is carried out analytically that yields

M
(2n)
G

=

(
−1

4

)n

Γ(n − 1)

∫
(dz)G

[
F0

U2V n−1
+

F1

U3V n−2
+ · · ·

]

◮ Integrand is expressed by a rational function of terms called building blocks,

U, V , Bij , Aj , and Cij .

◮ Building blocks are given by functions of {zi}, reflecting the topology of

diagram, flow of momenta, etc.

1 2 2
′

3 4 5

a

b c

1 + 5 + a

2 + 2′

c
b

4

3

p −
q

2
p +

q

2

q
P ′′ P ′

B A

C

topology of loops flow of external momenta
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Subtraction of UV Divergences

◮ UV divergence occurs when loop momenta in a subdiagram go to infinity. It

corresponds to the region of Feynman parameter space zi ∼ O(ǫ) for i ∈ S.
G S

◮ In order to carry out subtraction numerically, the singularities are cancelled

point-by-point on Feynman parameter space.

MG − LSMG/S −→
∫

(dz)G
[
mG −KSmG

]

◮ The subtraction integrand KSmG is derived from mG by simple

power-counting rule called K-operation. Cvitanović and Kinoshita, 1974

◮ By construction, subtraction terms can be factorized into (UV-divergent part

of) renormalization constant and lower-order magnetic part.

∫
(dz)G

[
KSmG

]
= L

UV
S MG/S

LUV
S is the leading UV-divergent part of LS . The difference (LUV

S − LS) must

be adjusted in later step called residual renormalization.
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Subtraction of UV divergence

◮ K-operation yields UV subtraction terms corresponding to divergent
subdiagram S:

◮ for a vertex subdiagram,

KSMG = LUV
S MG/S

where LUV
S

is divergent part of vertex renormalization constant.

◮ for a self-energy subdiagram,

KSMG = δmUV
S MG/S(i⋆) + BUV

S MG/[S,i]

where δmUV
S

and BUV
S

are divergent parts of mass and wave-function
renormalization constants.

◮ When there are more than one divergent subdiagram, all subdivergences

are identified by Zimmermann’s forest formula. UV-finite amplitude MR
G is

given by

M
R
G = MG +

∑

f

ΠS∈f (−KS)MG

where a forest f is a set of divergent subdiagrams without partial-overlapping.
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IR subtraction Scheme
◮ A diagram may have IR divergence when some momenta of photon go to

zero. It is really divergent by “enhancer” leptons that are close to on-shell by

kinematical constraint.

enhan
ers

k! 0

S

◮ We adopt subtraction approach for these divergences point-by-point on

Feynman parameter space.

◮ There are two types of sources of IR divergence in MG associated with a

self-energy subdiagram. To handle these divergences, we introduce two

subtraction operations:
◮ R-subtraction to remove the residual self-mass term

RSMG = δ̃mSMG/S(i∗)

◮ I-subtraction to subtract remaining logarithmic IR divergence

ISMG = L̃G/S(k)MS
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Nested IR singularities

◮ Nested IR divergences emerge when there are more than one self-energy

subdiagram account for IR singularity.

◮ These divergences are dealt with the combination of I-/R-subtractions,

conducted in a forest-like structure, which we call

“annotated forests”.

a forest with the annotation that each subdiagram in the forest accounts to

either of I- and R-subtractions.

◮ IR-finite amplitude ∆MG is given by

∆MG =
∑

f̃

(
−ISj

)
· · · (−RSk

) · · ·MR
G

where Sj ,Sk ∈ f̃ : annotated forest.
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Subtraction terms: Example

◮ Consider a 10th-order diagram MX253:

◮ MX253 have

• three self-energy subdiagrams (S1, S2, S3),

S1 S2 S3

• two vertex subdiagrams (S4, S5).

S4 S5
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UV Forests
◮ According to Zimmermann’s forest formula, 23 UV divergent parts and

corresponding subtraction terms are identified as:
forest subtraction expression

{S1} K28 −dmUV
16

M2∗ − BUV
16

M2

{S2} K57 −dmUV
4a

M6b(2∗) − BUV
4a

M6b

{S3} K33 −dm2 M42(2∗) − BUV
2

M42

{S4} K56 −LUV
2

M30

{S1,S2} K28K57 +dmUV
4a

dmUV
4b(1∗)

M2∗ + BUV
4a

dmUV
4b

M2∗ + BUV
4a

BUV
4b

M2

{S1,S3} K28K33 +dm2 dmUV
6c(1∗)

M2∗ + BUV
2

dmUV
6c

M2∗ + BUV
2

BUV
6c

M2

{S2,S3} K33K57 +dm2 dmUV
4a

M4b(2∗∗) + dm2 BUV
4a

M4b(2∗) +

BUV
2

dmUV
4a

M4b(2∗) + BUV
2

BUV
4a

M4b

{S1,S2,S3} K28K33K57 −dm2 dmUV
4a

dmUV
2∗∗

M2∗ − dm2 BUV
4a

dmUV
2∗

M2∗ −

BUV
2

dmUV
4a

dmUV
2∗

M2∗ −BUV
2

BUV
4a

dm2 M2∗ −BUV
2

BUV
4a

BUV
2

M2

and 15 other forests involving either S4 or S5.
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“Annotated forests” for IR subtraction
◮ 11 IR subtraction terms are identified by combination of self-energy type

subdiagrams with distinction of I- or R-subtraction operation as:

annotation subtraction expression

G → M,S1 → dm R2−8 −dmR
16

M2∗

G → M,S2 → dm R567 −dmR
4a

MR
6b(2∗)

G → M,S1 → dm,S2 → dm R2−8R567 +dmR
4a

dmR
4b(1∗)

M2∗

G → I,S1 → M I19 −MR
16

LR
2

G → I,S2 → M I123489 −MR
4a

LR
6b(2)

G → I,S3 → M I12456789 −M2 LR
42(2)

G → I,S1 → I,S2 → M I19I2348 +MR
4a

LR
4b1

LR
2

G → I,S1 → I,S3 → M I19I245678 +M2 LR
6c(1)

LR
2

G → I,S1 → M,S2 → dm I19R567 +dmR
4a

MR
4b(1∗)

LR
2

G → I,S3 → M,S2 → dm I12489R567 +M2 dmR
4a

LR
4b2(2∗)

G → I,S1 → I,S3 → M,S2 → dm I19I248R567 −M2 dmR
4a

LR
2∗

LR
2
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Amplitude as a finite integral

◮ Finite amplitude ∆MG free from both UV and IR divergences is obtained by

Feynman-parameter integral as:

∆MG =

∫
(dz)

[
FG

+
∑

f

∏

S∈f

(−KS)FG

f : Zimmermann’s forests:
combinations of UV divergent subdiagrams.

+
∑

f̃

(−ISi
) · · · (−RSj

) · · ·FG

]

f̃ : annotated forests:
combinations of self-energy subdiagrams
with distinction of I-/R-subtractions.

unrenormalized

amplitude

UV subtraction terms

IR subtraction terms
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Automation

◮ We need to evaluate a large number of Feynman diagrams.

(For 10th order Set V, there are 389 independent integrals.)

◮ Each diagram may have large number of UV and IR subtraction parts, to

each of which the subtraction integrand should be prepared.

e.g.

X072

15 UV-divergent parts and 119 IR-divergent parts.

◮ Identification of divergent parts is diagram-based, and suitable for

automated treatment.

◮ It should be error-prone by writing numerical integration code for these huge

integrals by hand. We developed an automated code-generating program.
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Automation

P

S

f

r

a

g

r

e

p

l

a




e

m

e

n

t

s

Diagram

FORTRAN

program

�gen
ode�

“ab
deed
ba”

Symbolic representation
of diagram

Build Amplitude,
Identify divergences,
Construct subtraction terms

Numerical
integration code

◮ “gencodeN” takes a single-line information that represents a diagram, and

generates numerical integration code in FORTRAN.

◮ “gencodeN” is tailored so that it can process any order of diagrams.

This enables us to check the validity of the code generator by lower

order diagrams.

TA, Hayakawa, Kinoshita, Nio, Nucl. Phys. B 740, 138 (2006)

TA, Hayakawa, Kinoshita, Nio, Nucl. Phys. B 796, 184 (2008)
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Numerical integration

◮ The amplitude is expressed as a multi-dimensional integral.

(D = 14 − 1 for 10th-order diagrams)

◮ The integrand is a huge rational function. The size of integrand is O(105)
lines of FORTRAN code per diagram.

◮ Numerical integration is performed by an adaptive-iterative Monte-Carlo

method, VEGAS. Lepage, J.Comput.Phys.27, 192 (1978)

A new version of VEGAS: https://github.com/gplepage/vegas

◮ Integral over D-dimensional region ID = [0, 1]D is evaluated from N

independent samples of a random variable that is distributed according to

ρ(x) within ID .

adaptive grid adjustment during iterations
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Numerical precision

◮ Divergences are dealt with subtractive scheme point-by-point in the

parameter space. Severe digit-deficiency problem may occur.

◮ IEEE754 double-precision floating point format:

figure taken from Wikipedia

resolution is 2−53 (16–17 digits).

◮ Some diagrams with a number of self-energy subdiagrams have linear or

worse IR divergences, that may exhibit unstable convergence on integration

with insufficient numerical precision.

e.g.
X008
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Numerical precision

◮ A remedy is to employ extended precision arithmetic (quadruple, etc).

IEEE754 quadruple precision binary floating-point format (binary128):

figure taken from Wikipedia

This provides approximately 34 significant decimal digits.

At present, there is no hardware support in commodity facilities.

◮ Another option is to express a floating-point value a by a set of

double-precision data

a0, a1, . . . as:

a = a0 + ǫ a1 + ǫ2
a2 + · · · , ǫ = 2

−53

Arithmetics over a are translated to those over ai ’s, by passing rounding-off

residues to lower order components based on Knuth and Dekker algorithm.

We use “double-double” (and also “quadruple-double”) of qd library

Bailey, Hida, Li. c.f. http://crd.lbl.gov/˜dhbailey/mpdist/

It is implemented by software, and approx. 20 times costly compared to

double precision arithmetic.
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Facilities

◮ Numerical calculations are mainly conducted on supercomputers in RIKEN.

◮ RIKEN Super Combined Cluster (RSCC)
12 TFlops, Apr. 2005 – Jun. 2009

◮ RIKEN Integrated Cluster of Clusters (RICC)
96 TFlops, Oct. 2009 – Mar. 2015

◮ (new) RIKEN Hokusai GreatWave
1 PFlops, June. 2015 –

◮ Several other facilities are used e.g. workstations in Nagoya University, and

KMI ϕ cluster computing system.

photo from RIKEN
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Numerical values of Set V integrals
◮ Thus, the numerical evaluation of 389 integrals of Set V yields the results as

follows, where each statistical uncertainty due to VEGAS Monte-Carlo

integration is lower than certain criterion:

Diagram Vertex repr. No. of subtr. terms Value (Error) including nF No. of iterations with 109

sampling points per iteration

X001 abacbdcede 47 −0.1724 (91) 20

X002dd abaccddebe 47 −5.9958 (333) 13

X003 abacdbcede 19 −0.1057 (52) 10

X004dd abacdcdebe 71 5.1027 (339) 9

X005 abacddbece 43 1.1112 (168) 20

X006 abacddcebe 59 −5.2908 (245) 9

X007 abbcadceed 47 −3.4592 (254) 25

X008qd abbccddeea 47 −16.5070 (289) 11

X009 abbcdaceed 19 −3.1069 (71) 24

X010dd abbcdcdeea 83 11.2644 (342) 124

X011dd abbcddaeec 43 6.0467 (338) 22

X012dd abbcddceea 67 −9.3328 (267) 26

X013 abcabdecde 7 −1.3710 (31) 2

X014 abcacdedbe 31 0.8727 (42) 10

X015 abcadbecde 2 2.1090 (8) 2

X016 abcadcedbe 2 −0.9591 (7) 2

X017 abcaddebce 6 0.5146 (13) 20

X018 abcaddecbe 6 0.0309 (13) 20

X019 abcbadeced 31 1.2965 (48) 10

X020dd abcbcdedea 134 −8.1900 (318) 43

X021 abcbdaeced 11 −0.2948 (15) 10

X022 abcbdcedea 79 0.8892 (226) 22

X023 abcbddeaec 27 0.4485 (55) 25

X024 abcbddecea 75 −6.0902 (246) 23

X025 abccadeebd 39 −0.7482 (194) 20

X026dd abccbdeeda 95 −7.8258 (277) 8

X027 abccdaeebd 15 −2.3260 (54) 13

X028dd abccdbeeda 71 4.5663 (342) 49

X029dd abccddeeab 35 6.9002 (233) 1

X030dd abccddeeba 67 −12.6225 (342) 34

X031 abcdaebcde 2 2.3000 (14) 4
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Residual renormalization

◮ We adopt the standard on-shell renormalization to ensure that the coupling

constant α and the electron mass me are the ones measured by

experiments.

◮ The sum of all these finite integrals defined by K-operation and

I-/R-subtraction operations does not correspond to physical contribution to

g − 2.

◮ The difference is adjusted by the step called the residual renormalization.

ae = M(bare) − on-shell renormalization

=
[
M(bare) − UV subtr. − IR subtr.

]

︸ ︷︷ ︸
Finite integral ∆M

+
[
−on-shell renorm. + UV subtr. + IR subtr.

]

︸ ︷︷ ︸
finite residual renormalization
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Deriving residual renormalization

◮ Sum up over 389 integrals of 10th order Set V, which requires analytic sum

of ∼ 16,000 symbolic terms.

◮ The physical contribution from 10th order Set V is thus given by:

A
(10)
1 [Set V] = ∆M10[Set V]

+ ∆M8(−7∆LB2)

+ ∆M6{−5∆LB4 + 20(∆LB2)
2}

+∆M4{−3∆LB6 + 24∆LB4∆LB2 − 28(∆LB2)
3 + 2∆L2∗∆dm4}

+ M2{−∆LB8 + 8∆LB6∆LB2 − 28∆LB4(∆LB2)
2

+ 4(∆LB4)
2 + 14(∆LB2)

4 + 2∆dm6∆L2∗}
+ M2∆dm4(−16∆L2∗∆LB2 +∆L4∗ − 2∆L2∗∆dm2∗),

◮ The terms with ∆ are the finite nth order quantities.
◮ ∆Mn, M2: finite magnetic moment.
◮ ∆LBn: sum of vertex and wave-function renormalization constants.
◮ ∆dmn: mass-renormalization constants.
◮ ∆L∗

n , ∆dm∗
n : ∗ denotes mass insertion.
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Numerical evaluation of Set V

◮ The sum of these 389 integrals is

∆M10 = 3.468 (336)

With the auxiliary quantities required for the residual renormalization listed

below,

Integral Value (Error)

∆M8 1.738 12 (85)
∆M6 0.425 8135 (30)
∆M4 0.030 833 612 · · ·

M2 0.5
∆LB8 2.0504 (86)
∆LB6 0.100 801 (43)
∆LB4 0.027 9171 (61)
∆LB2 0.75

Integral Value (Error)

∆L4∗ −0.459 051 (62)
∆L2∗ −0.75
∆dm6 −2.340 815 (55)
∆dm4 1.906 3609 (90)
∆dm2∗ −0.75

we obtain the 10th order contribution from Set V, A
(10)
1 :

A
(10)
1 [Set V] = 8.726 (336).

◮ Numerical evaluation of other sets are carried out in a similar manner.

Next table shows the summary of these results.
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Numerical values of 10th order contribution from 32 subsets

universal electron muon

Set nF A1 A2(me/mµ) A2(mµ/me) A2(mµ/mτ ) A3(mµ/me, mµ/mτ )

I(a) 1 0.000 470 94 (6) 0.000 000 28 (1) 22.566 973 (3) 0.000 038 (0) 0.017 312 (1)
I(b) 9 0.007 010 8 (7) 0.000 001 88 (1) 30.667 091 (3) 0.000 269 (0) 0.020 179 (1)
I(c) 9 0.023 468 (2) 0.000 002 67 (1) 5.141 395 (1) 0.000 397 (0) 0.002 330 (0)
I(d) 6 0.003 801 7 (5) 0.000 005 46 (1) 8.8921 (11) 0.000 388 (0) 0.024 487 (2)
I(e) 30 0.010 296 (4) 0.000 001 60 (1) −0.9312 (24) 0.000 232 (0) 0.002 370 (0)
I(f) 3 0.007 568 4 (20) 0.000 047 54 (1) 3.685 049 (90) 0.002 162 (0) 0.023 390 (2)
I(g) 9 0.028 569 (6) 0.000 024 45 (1) 2.607 87 (72) 0.001 698 (0) 0.002 729 (1)
I(h) 30 0.001 696 (13) −0.000 010 14 (3) −0.5686 (11) 0.000 163 (1) 0.001 976 (3)
I(i) 105 0.017 47 (11) 0.000 001 67 (2) 0.0871 (59) 0.000 024 (0) 0

I(j) 6 0.000 397 5 (18) 0.000 002 41 (6) −1.263 72 (14) 0.000 168 (1) 0.000 110 (5)
II(a) 24 −0.109 495 (23) −0.000 737 69 (95) −70.4717 (38) −0.018 882 (8) −0.290 853 (85)
II(b) 108 −0.473 559 (84) −0.000 645 62 (95) −34.7715 (26) −0.035 615 (20) −0.127 369 (60)
II(c) 36 −0.116 489 (32) −0.000 380 25 (46) −5.385 75 (99) −0.016 348 (14) −0.040 800 (51)
II(d) 180 −0.243 00 (29) −0.000 098 17 (41) 0.4972 (65) −0.007 673 (14) 0

II(e) 180 −1.344 9 (10) −0.000 465 0 (40) 3.265 (12) −0.038 06 (13) 0

II(f) 72 −2.433 6 (15) −0.005 868 (39) −77.465 (12) −0.267 23 (73) −0.502 95 (68)
III(a) 300 2.127 33 (17) 0.007 511 (11) 109.116 (33) 0.283 000 (32) 0.891 40 (44)
III(b) 450 3.327 12 (45) 0.002 794 (1) 11.9367 (45) 0.143 600 (10) 0

III(c) 390 4.921 (11) 0.003 70 (36) 7.37 (15) 0.1999 (28) 0

IV 2072 −7.7296 (48) −0.011 36 (7) −38.79 (17) −0.4357 (25) 0

V 6354 8.726 (336) 0 0 0 0

VI(a) 36 1.041 32 (19) 0.006 152 (11) 629.141 (12) 0.246 10 (18) 2.3590 (18)
VI(b) 54 1.346 99 (28) 0.001 778 9 (35) 181.1285 (51) 0.096 522 (93) 0.194 76 (26)
VI(c) 144 −2.5289 (28) −0.005 953 (59) −36.58 (12) −0.2601 (28) −0.5018 (89)
VI(d) 492 1.8467 (70) 0.001 276 (76) −7.92 (60) 0.0818 (17) 0

VI(e) 48 −0.4312 (7) −0.000 750 (8) −4.32 (14) −0.035 94 (32) −0.1122 (24)
VI(f) 180 0.7703 (22) 0.000 033 (7) −38.16 (15) 0.043 47 (85) 0.0659 (31)
VI(g) 480 −1.5904 (63) −0.000 497 (29) 6.96 (48) −0.044 51 (96) 0

VI(h) 630 0.1792 (39) 0.000 045 (9) −8.55 (23) 0.004 85 (46) 0

VI(i) 60 −0.0438 (12) −0.000 326 (1) −27.34 (12) −0.003 45 (33) −0.0027 (11)
VI(j) 54 −0.2288 (18) −0.000 127 (13) −25.505 (20) −0.011 49 (33) −0.016 03 (58)
VI(k) 120 0.6802 (38) 0.000 015 6 (40) 97.123 (62) 0.002 17 (16) 0

sum 12672 7.795 (336) −0.003 82 (39) 742.18 (87) −0.068 (5) 2.011 (10)
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Summary and discussion

Feynman diagrams exhibited at Fermilab Art Gallery by Edward Tufte

Photo from The Work of Edward Tufte and Graphics Press



Summary and discussion

◮ For the electron g−2, the experimental precision has reached to 0.24 ppb,

while the perturbative contribution of QED up to 10th order (α/π)5 has now

been available. The experiment and the theory of ae agrees to O(10−12).

◮ From ae(exp) and ae(theory), the most precise determination of the fine

structure constant α is obtained, with the precision of 0.25 ppb.

◮ New measurement is being prepared with new apparatus for the positron

g−2 by the Harvard group. Further improvement on the experiment is

expected.

◮ The largest source of theoretical uncertainty at present is the 8th order QED

term. Improvement on the numerical evaluation of 8th term as well as 10th

order term is continuously in progress.

◮ Improvement on the non-QED α is crucial as the input of the theoretical

prediction. Comparison of α from different determinations provides another

stringent test of QED.
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Summary and discussion

◮ For the muon g−2, the discrepancy between the experiment and the theory

is being observed by 2.7σ. It is an urgent problem to understand whether it

persists or not with the improvement of both experiment and theory.

◮ New experiments are being prepared at Fermilab and J-PARC, both aiming

at 0.1 ppm level.

◮ The QED contribution is dominant but it has been known precisely enough

for the next experiments, with the complete evaluation of the 10th order

term. We can now concentrate on the hadronic contribution, the present

largest source of theoretical uncertainty by 0.6ppm.

◮ Lattice QCD will be a promising tool for the evaluation of the hadronic

contribution.

This will be the subject of the next speaker, Izubuchi-san, and of a number

of parallel talks in this conference.
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Summary and discussion

◮ Do we need 6-loop contribution?

◮ There are 202,770 vertex Feynman diagrams contributing to 12th order. The

Feynman-parametric integral involves 16 dimensional numerical integration,

each combinatorially more complicated than those of 10th order.

◮ Consider that
(α
π

)6

∼ O(10−16), and the present uncertainty of ae is of

O(10−13), it is not likely that 12th-order contribution is needed for the time

being.

◮ For the muon g−2, a large numerical factor is expected from

the electron loops. The leading contribution will come from

three insertions of 2nd-order vacuum-polarization loop into

the 6th-order light-by-light diagram. It is estimated as:

∼ A
(6)
2 (mµ/me; l-by-l)×

{
2

3
ln

(
mµ

me

)
− 5

9

}3

×10×
(α
π

)6

∼ 0.08 × 10
−11.

It is larger than the uncertainty of 10th order term. A crude evaluation may

be desirable.
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Thank you.



Backup



Step-by-step example with 4th-order diagrams
◮ Let us illustrate the steps by simpler case,

e.g. 4th-order diagrams.

◮ There are 7 diagrams of 4th order;

6 of them have no closed lepton loop (q-type).

◮ They are WT-sumed into 2 self-energy-like diagrams, 4a and 4b.

4a

4b
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Step 1: Amplitude

◮ Introduce Feynman parameters z1, . . . , z5 to propagators:

z1 z2 z3

z4 z5

◮ Anomalous magnetic moment M4a is converted analytically into the form:

M4a =

∫
(dz) F4a =

∫
(dz)

[E0 + C0

U2V
+

N0 + Z0

U2V 2
+

N1 + Z1

U3V

]

where integrand and building blocks are given as follows:

(dz) = dz1dz2dz3dz4dz5δ(1 − z12345)

B11 = z235, B12 = z35, B13 = −z2,

B23 = z14, B22 = z1345, B33 = z124,

U = z2B12 + z14B11,

Ai = 1 − (z1B1i + z2B2i + z3B3i )/U,

G = z1A1 + z2A2 + z3A3, V = z123 − G,

zijk··· = zi + zj + zk + · · · .

E0 = 8(2A1A2A3 − A1A2 − A1A3 − A2A3)

C0 = −24Z4Z5/U

N0 = G(E0 − 8(2A2 − 1))

Z0 = 8z1(−A1 + A2 + A3 + A1A2 + A1A3 − A2A3)

+8z2(1 − A1A2 + A1A3 − A2A3 + 2A1A2A3)

+8z3(A1 + A2 − A3 − A1A2 + A1A3 + A2A3)

N1 = 8G(B12(2 − A3) + 2B13(1 − 2A2) + B23(2 − A1))

Z1 = −8z1(B12(1 − A3) + B13 + B23A1)

+8z2(B12(1 − A3) − 4B13A2 + B23(1 − A1))

−8z3(B12A3 + B13 + B23(1 − A1))
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Step 2: UV subtraction
◮ M4a is not well-defined — it has UV divergences when the loop momenta

goes to infinity.

F4a

x y

x y
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Step 2: UV subtraction
◮ M4a is not well-defined — it has UV divergences when the loop momenta

goes to infinity.

◮ This corresponds to a region of zi ’s when all zi on the loop vanish

simultaneously.

F4a

x y

x y
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Step 2: UV subtraction

◮ We prepare an integral which has the same UV divergent profile by

K-operation, and perform subtraction point-by-point on the integrand.

F4a

x y

x y

M2

L̂2

K23FM4a
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Step 2: UV subtraction

◮ We prepare an integral which has the same UV divergent profile by

K-operation, and perform subtraction point-by-point on the integrand.

◮ Then the finite part of the anomalous magnetic moment ∆M4a is obtained by

the integral:

∆M4a =

∫
(dz)

[
F4a−K12F4a−K23F4a

]

F4a

x y

x y

M2

L̂2

K23FM4a
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Step 3: IR subtraction

◮ M4b has IR divergence as well, from vanishing of virtual photon momentum.

◮ This logarithmic IR divergence is handled by an integral which is

constructed by I-subtraction.

◮ Then the finite part of the anomalous magnetic moment ∆M4b is obtained by

the integral:

∆M4b =

∫
(dz)

[
F4b−K22F4b−I13F4b

]

x y x

y

x y x

y
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Step 4: Residual renormalization

◮ Finite part of amplitude is given in terms of integral with appropriate UV

and/or IR subtraction terms.

∆M4a =

∫
(dz)

[
F4a−K12F4a−K23F4a

]

∆M4b =

∫
(dz)

[
F4b−K22F4b−I13F4b

]
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Step 4: Residual renormalization

◮ Finite part of amplitude is given in terms of integral with appropriate UV

and/or IR subtraction terms.

∆M4a =

∫
(dz)

[
F4a−K12F4a−K23F4a

]

∆M4b =

∫
(dz)

[
F4b−K22F4b−I13F4b

]

◮ Subtraction terms are analytically factorized into products of lower-order

quantities.

= M4a−L̂2M2 − L̂2M2

= M4b−(δm2M2⋆ + B̂2M2)−L̃2M2
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Step 4: Residual renormalization

◮ Finite part of amplitude is given in terms of integral with appropriate UV

and/or IR subtraction terms.

∆M4a =

∫
(dz)

[
F4a−K12F4a−K23F4a

]

∆M4b =

∫
(dz)

[
F4b−K22F4b−I13F4b

]

◮ Subtraction terms are analytically factorized into products of lower-order

quantities.

= M4a−L̂2M2 − L̂2M2

= M4b−(δm2M2⋆ + B̂2M2)−L̃2M2

◮ Standard on-shell renormalization is denoted by

a
(4)[q-type] = M4a − 2L2M2

+M4b − (δm2M2⋆ + B2M2)

a
(4)[q-type] = (∆M4a +∆M4b)−∆LB2 M2

◮ By substitution, magnetic moment is given

where ∆LB2 is finite part of L2 + B2.
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