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• Motivation - Experimental challenges & theoretical issues 

• Nucleon charges (Axial, tensor, scalar) 

• Momentum fraction 

• Spin content, including  

• EM form factors (including strangeness, light nuclei, charge symmetry) 

• Pion,                  form factors 

• Transverse Momentum Distributions & “quasi”-PDFs 

• Summary & outlook
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• Major goal of nuclear physics community  

• understand the structure and behaviour of strongly interacting matter in 
terms of its basic constituents - quarks and gluons  

• An important step towards this goal is the characterisation of the internal structure 
of the nucleon 

• Driving force behind several experimental programs, e.g. JLab 12 GeV upgrade

Motivation

Page 3

CHL-2CHL-2

Upgrade magnetsUpgrade magnets

and powerand power

suppliessupplies

Enhance equipment inEnhance equipment in

existing hallsexisting halls

Add new hallAdd new hall

CEBAF at 12 GeV



0.2

0.4

0.6

0.8

1

-410 -310 -210 -110 1

 HERAPDF2.0 NNLO
 uncertainties:
 experimental
 model
 parameterisation
 
 HERAPDF2.0AG NNLO 

x

xf 2 = 10 GeV2
f
µ

vxu

vxd

 0.05)×xS (

 0.05)×xg (

H1 and ZEUS 

Figure 23: The parton distribution functions xuv, xdv, xS = 2x(Ū+ D̄) and xg of HERAPDF2.0
NNLO at µ2f = 10GeV

2. The gluon and sea distributions are scaled down by a factor 20. The
experimental, model and parameterisation uncertainties are shown. The dotted lines represent
HERAPDF2.0AG NNLO with the alternative gluon parameterisation, see Section 6.8.
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Deep inelastic scattering (DIS) experiments

• Parton distribution functions 

• reveal the breakdown of the momentum of a (fast-moving) 
nucleon terms of its quark and gluon (parton) constituents 

• The same cannot be said of our understanding of the nucleon spin, mass, 
magnetic moment, ….

[HERA, 1506.06042]



Proton has spin 1/2
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Proton has spin 1/2

Spin of the Proton

Quark Model predicts: only due to the 
spin of 3 valence quarks (also spin-1/2)

Chapter 1

Overview: Science, Machine and
Deliverables of the EIC

1.1 Scientific Highlights

1.1.1 Nucleon Spin and its 3D Structure and Tomography

Several decades of experiments on deep inelastic scattering (DIS) of electron or muon beams
o↵ nucleons have taught us about how quarks and gluons (collectively called partons) share
the momentum of a fast-moving nucleon. They have not, however, resolved the question of
how partons share the nucleon’s spin and build up other nucleon intrinsic properties, such
as its mass and magnetic moment. The earlier studies were limited to providing the lon-
gitudinal momentum distribution of quarks and gluons, a one-dimensional view of nucleon
structure. The EIC is designed to yield much greater insight into the nucleon structure
(Fig. 1.1, from left to right), by facilitating multi-dimensional maps of the distributions of
partons in space, momentum (including momentum components transverse to the nucleon
momentum), spin, and flavor.

Figure 1.1: Evolution of our understanding of nucleon spin structure. Left: In the 1980s,
a nucleon’s spin was naively explained by the alignment of the spins of its constituent quarks.
Right: In the current picture, valence quarks, sea quarks and gluons, and their possible orbital
motion are expected to contribute to overall nucleon spin.
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Proton has spin 1/2

Spin of the Proton

Quark Model predicts: only due to the 
spin of 3 valence quarks (also spin-1/2)

EMC (1988) found this only accounted for 1±12±24% 

COMPASS (2007) improved this to 33±3±5% 

“Spin crisis”?
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spin of 3 valence quarks (also spin-1/2)
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Proton has spin 1/2

Spin of the Proton

Quark Model predicts: only due to the 
spin of 3 valence quarks (also spin-1/2)

EMC (1988) found this only accounted for 1±12±24% 

COMPASS (2007) improved this to 33±3±5% 

“Spin crisis”?

No, only a “spin puzzle”

But how is the other 70% of the proton spin distributed between these components?
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How is the spin of the proton distributed between its constituents? 

Jaffe & Manohar (1990): 

X. Ji (1997): 

Why so small? 

Due to large negative       ? 

Much effort to determine        experimentally 

e.g. COMPASS, HERMES

Spin of the Proton
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How is the spin of the proton distributed between its constituents? 

Jaffe & Manohar (1997): 

X. Ji (1997): 

Why so small? 

Large        ?  

Recent global analysis of RHIC (PHENIX & STAR) and COMPASS data

Spin of the Proton
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[de Florian et al., PRL113 012001((2014)]

(negligible contribution x>0.2, poorly constrained 0.001<x<0.05)
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Elastic Scattering - Polarisation Transfer
Polarisation transfer experiments at JLab revealed a surprising behaviour for GE/GM  

Precise results now available up to 8-9 GeV2 

What is the origin of the linear fall-off? 

Does         change sign?

26

coupled integral equations for QCD’s Green functions
that provide access to emergent phenomena of non-
perturbative QCD, such as dynamical chiral symme-
try breaking and confinement [98]. The DSEs admit a
symmetry-preserving truncation scheme that enables a
unified description of meson and baryon properties. The
approach has already achieved considerable success in
the pseudoscalar meson sector [19]. The prediction of
nucleon form factors in the DSE approach involves the
solution of a Poincaré-covariant Faddeev equation. In
the calculations of [17], dressed quarks form the elemen-
tary degrees of freedom and correlations between them
are expressed via scalar and axial vector diquarks. The
only variable parameters in this approach are the diquark
masses, fixed to reproduce the nucleon and ∆ masses,
and a diquark charge radius r+1 embodying the electro-
magnetic structure of the diquark correlations. A dif-
ferent approach to DSE-based form factor calculations
effects binding of the nucleon through a single dressed
gluon exchange between any two quarks [18] without ex-
plicit diquark degrees of freedom. In this calculation, the
only parameters are a scale fixed to reproduce the pion
decay constant and a dimensionless width parameter η
describing the infrared behavior of the effective coupling
strength of the quark-quark interaction.

The predictions of several DSE-based calculations for
the proton Sachs form factor ratio R = µpG

p
E/G

p
M are

shown in Figure 16. The quark-diquark model calcula-
tion [17] underpredicts the data at low Q2 but agrees rea-
sonably well at higher Q2. The disagreement at low Q2 is
attributed to the omission of meson cloud effects. The ad-
dition of dynamically generated, momentum-dependent
dressed-quark anomalous magnetic moments [99] that be-
come large at infrared momenta improves the description
of R at low Q2. The three-quark model calculation [18]
agrees with the data at low Q2, but underpredicts the
data at higher Q2, becoming numerically unreliable for
Q2 ! 7 GeV2.

The deficiencies of the DSE approach, including the ap-
proximation schemes required to make the calculations
analytically tractable and the omission of meson-cloud
effects, are evident in the disagreement between the pre-
dicted form factors and the experimental data, which is
more severe than in the various models described above,
which have more adjustable parameters. The advantage
of the approach is that it provides a systematically im-
provable framework for the ab initio evaluation of hadron
properties in continuum non-perturbative QCD, that is
complementary to discretized lattice simulations. As fun-
damental measurable properties of nucleon structure, the
electromagnetic form factors are essential to the feedback
between theory and experiment required to make further
progress in this direction.

)2 (GeV2Q
0 5 10

p M
/Gp E

 G p
µ

-0.5

0.0

0.5

1.0

 = 0.8 fm+
1t09, reClo

qκChang11, add 
 = 1.8ηEichmann11, 
 = 2.0ηEichmann11, 

FIG. 16. (color online) Predictions of DSE-based calcula-
tions for R = µpG

p
E/G

p
M compared to experimental data

from cross section [5, 80, 81] (empty circles) and polariza-
tion [1, 2, 25] (filled circles) experiments, where the results of
[2] are replaced by those of the present work. The results of
[17] (Cloët09) are shown for a particular choice of the diquark
charge radius. The curve from [99] (Chang11) is that of [17]
with the addition of dressed quark anomalous magnetic mo-
ments. The results of [18] (Eichmann11) are shown for two
values of η, showing the weak sensitivity of the form factor
results to this parameter.

7. AdS/QCD

In the past decade, theoretical activity has flourished
in modeling QCD from the conjecture of the anti-de
Sitter space/conformal field theory (AdS/CFT) corre-
spondence [133–135], a mapping between weakly coupled
gravitational theories in curved five-dimensional space-
time and strongly coupled gauge theories in flat four-
dimensional space-time. Since QCD is not a conformal
field theory, the symmetry of the anti-de Sitter space
is broken by applying a boundary condition. Brodsky
and de Teramond [136] have calculated F1 for the pro-
ton and neutron and emphasized the agreement of the
predicted Q2F1 dependence with the data. Abidin and
Carlson [137] have calculated both proton and neutron F1

and F2 along with the tensor form factors using both hard
and soft wall boundary conditions. This model predicts
the same asymptotic Q2 dependence as the dimensional
scaling of pQCD, but does not reproduce the detailed
features of the data in the presently measured Q2 region.

[JLab, Hall A, PRC85 (2012) 045203]
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• Charge radius of the nucleon 

•              discrepancy between µH and H / e-p scattering

Size of the Proton

2

FIG. 1: Extractions of the proton charge radius from muonic hydrogen measurements [1, 2], hydrogen
spectroscopy [3], electron scattering measurements at Mainz [6, 7], and a global analysis of earlier world
data [4]. The direct average shown is compared to the CODATA-2010 evaluation [3]. Figure courtesy of
Randolf Pohl.

warranted. While none of these appear likely to resolve to the discrepancy with muonic hydrogen

measurements, some issues remain which deserve more detailed examination.

II. GENERAL ISSUES IN THE EXTRACTION OF THE RADII

One obtains the charge and magnetic form factors, GE(Q2) and GM(Q2), from unpolarized

cross section measurements by performing a Rosenbluth separation [9] which uses the angle-

dependence at fixed Q2 to separate the charge and magnetic contributions. The cross section at

fixed Q2 is proportional to the ’reduced’ cross section σR = τG2
M + εG2

E, where τ = Q2/(4M2
p )

and ε−1 = [1 + 2(1 + τ) tan2(θ/2)]. At low Q2, the magnetic contribution is strongly suppressed

except for very small ε values, corresponding to large scattering angle. Because of the difficul-

ties in making very large angle scattering measurements at low Q2, a significant extrapolation to

ε = 0 is required and even sub-percent uncertainties on the cross sections can yield significant

uncertainties on small contribution from GM(Q2).

Because one often combines data from many experiments, each of which has an uncertainty in

its normalization uncertainty, the normalizations factors of the limited number of large-angle data

sets have a great impact on the extraction of GM . If these normalization factors are allowed to

vary in the fit, which is the most common approach, then a small shift in normalization between

large and small angle data sets can yield a significant shift of strength between GE and GM over

a range in Q2 values. Polarization observables are sensitive to the ratio GE/GM [10, 11] and can

thus provide not only direct information on the form factors, but also improve the determination

⇠ 7�

[Arrington, arXiv:1506.00873]
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• An understanding of nucleon spin is a major goal of many current and future 
experimental programs 

• 12 GeV JLab upgrade • Origins of quark confinement  

• Spin and flavour structure of the proton and 
neutron (PDF’s, GPD’s, TMD’s…) 

• Quark structure of nuclei 

• Probe potential new physics through high 
precision tests of the Standard Model 

• Flavour separation of EM form factors

Hadron Structure - new experiments



• An understanding of nucleon spin is a major goal of many current and future 
experimental programs 

• 12 GeV JLab upgrade 


• COMPASS (II) 

• Proton spin (GPDs, Gluon) 

• TMDs 

• Pi and K polarisabilities

Hadron Structure - new experiments



Hadron Structure - new experiments
• An understanding of nucleon spin is a major goal of many current and future 

experimental programs 

• 12 GeV JLab upgrade 


• COMPASS (II)  

• RHIC 

• (PHENIX, STAR)  

• spin and orbital angular momentum 
of quarks and gluons 

• transverse spin structure of the 
proton



• An understanding of nucleon spin is a major goal of many current and future 
experimental programs 

• 12 GeV JLab upgrade 


• COMPASS (II)  

• RHIC  

• MAMI (Mainz):

• EM form factors, polarisabilities 

• Structure of nuclei 

• Parity violating - strange EM, axial 
form factor

Hadron Structure - new experiments



• An understanding of nucleon spin is a major goal of many current and future 
experimental programs 

• 12 GeV JLab upgrade 


• COMPASS (II) 


• RHIC  

• MAMI (Mainz)


• Electron-Ion Collider (JLab or BNL)

• Dramatic improvement in 
understanding role of sea quarks and 
glue 

• “Missing spin” provided by gluons 

• High-energy probes of partons’ 
transverse momenta - contribution 
from orbital motion

Hadron Structure - new experiments



Lattice Hadron Structure



Lattice 3pt function
Most common method for determining matrix elements relevant for 
hadron structure calculations - 3pt function


For large times 

    Extract matrix element 

                           Determine form factors, charges, moments, …
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W-

Nucleon axial charge

Relatively simple to compute on the lattice (p=q=0, isovector) 

Good benchmark for hadron structure (understanding systematic errors)

gexpA = 1.2701(25)



Summary plot: RQCD PRD91 (2015) 054501

Results systematically 10-20% below 
experiment 

Large scatter in the results 

interest in studying potential 
sources of systematic error

Determination of gA on the Lattice

line suggests consistency with experiment. At the physical
point it reads gA ¼ 1.242ð15Þ, two standard deviations
below the known value. However, clearly, with few
ensembles at small quark masses and Lmπ > 4, we cannot
at present perform such an extrapolation with any con-
fidence, in particular as the slope is expected to change its
sign towards very small pion masses, see, e.g., Ref. [75] as
well as Sec. IV below.
Prior to investigating the finite volume behavior in more

detail in the next section, in Fig. 16 we put our Nf ¼ 2
results on gA in perspective, comparing these to recent
determinations obtained by other collaborations, namely
QCDSF [26], the Mainz group5 [28] and ETMC [29]
for Nf ¼ 2, LHPC [23] and RBC/UKQCD [27] for Nf ¼
2þ 1 as well as ETMC [35] and PNDME [39] for
Nf ¼ 2þ 1þ 1. Most errors displayed are larger than
ours, which include the systematics from the renormaliza-
tion factors, varying fit ranges and parametrizations. This
precision is in particular due to our large numbers of
measurements and the effort that went into the optimization
of the nucleon interpolators. We also indicate in the figure
as a shaded area the result of a chiral extrapolation of our
data on the ratio gA=Fπ , which we expect to be less affected
by finite volume effects, see Sec. IV.

Note that the recent QCDSF study [26] utilizes a
smearing different from ours for mπ > 250 MeV but has
significant overlap in terms of the gauge ensembles and the
values of ZA used. These results also carry quite small
errors, however, their gA values are systematically lower,
suggesting in these cases that smearing could be an issue,
see Fig. 5. The leftmost point of that study, which they
associate with mπ≈130MeV, was obtained using the same
smearing that we employ on a subset of ensemble VII
[mπðLÞ ≈ 160 MeV, Lmπ ≈ 2.8, mπð∞Þ ≈ 149.5 MeV].
Their result at this point (leftmost circle) is compatible
within errors not only with experiment but also with our
corresponding high statistics result (second red square from
the left).
Within errors all recent determinations (with the excep-

tion ofmπ > 250 MeV QCDSF results) are consistent with
our data. In particular, differences between including the
strange or even the charm quark or ignoring these vacuum
polarization effects are not obvious. Moreover, in all
studies the gA values appear to be constant or increasing
with decreasing pion mass and, where this could be
resolved, correlated with the lattice size. In none of the
simulations could any significant lattice spacing effects be
detected.

IV. FINITE SIZE EFFECTS AND
THE AXIAL CHARGE gA

Above we have seen a noticeable dependence of gA
on the lattice volume for Lmπ < 4.1. Chiral perturbation
theory not only predicts the functional form of the pion
mass dependence of hadronic observables but also their
finite volume effects, as long as mπ is small enough and
λ ¼ Lmπ sufficiently large. To leading nontrivial order
[76,77], the finite size effects on the pion mass read

mπðLÞ −mπ

mπ
¼ 2

Nf
hðLmπ; mπÞ; ð28Þ

hðλ; mπÞ ¼
m2

π

16π2F2

X

n≠0

K1ðλjnjÞ
λjnj

; ð29Þ

where F is the pion decay constant in the chiral limit,
mπ ¼ mπð∞Þ is the infinite volume pion mass, n ∈ Z3 are
integer component vectors and K1ðxÞ is the modified
Bessel function of the second kind.
The only parameter appearing in Eq. (28), apart from

F ¼ 85.8ð6Þ MeV [3,78], is the infinite volume pion mass.
Going beyond this order of chiral perturbation theory
[79,80], several low energy constants (LECs) are encoun-
tered, namely l̄i, i ¼ 1; 2; 3; 4 at Oðp4Þ and ~riðmρÞ, i ¼
1; 2;…; 6 atOðp6Þ (next-to-next-to-leading order, NNLO).
We use the parametrization with NNLO chiral perturbation
theory input of Ref. [80] to investigate finite volume effects
of the pion mass, setting F ¼ 86 MeV and using the FLAG

FIG. 16 (color online). gA as a function of m2
π : our results

[RQCD, nonperturbatively improved (NPI) Wilson clover] in
comparison to other results (fermion action used in brackets).
Nf ¼ 2: QCDSF [26] (NPI Wilson clover), Mainz5 [28] (NPI
Wilson clover), ETMC [29] (twisted mass). Nf ¼ 2þ 1: LHPC
[23] (HEX-smeared Wilson clover), RBC/UKQCD [27] (domain
wall). Nf ¼ 2þ 1þ 1: ETMC [35] (twisted mass), PNDME [39]
(Wilson clover on a HISQ staggered sea). Also indicated as a
shaded area is the result from extrapolating our gA=Fπ data to the
physical point, see Sec. IV.

5For each of the ensembles studied by the Mainz group two
results are given in their article, obtained from plateau fits and
from the summation method. We include the summation results
since this appears to be their preferred method.

NUCLEON ISOVECTOR COUPLINGS FROM Nf ¼ 2 … PHYSICAL REVIEW D 91, 054501 (2015)

054501-11



Thorough investigations of  

Lattice spacing 

Quark mass 

Finite volume 

Contamination from excited states 

Improved axial current

Determination of gA on the Lattice

[Schiller, Sat 10:20]

gA appears to be very sensitive to Lattice systematics 

Lots of effort in reducing systematic errors                    flow on for other quantities

[Dragos, Tue 17:30]
[Gupta, Thu 10:40]

[von Hippel, Sat 10:40]

[Yamazaki, Wed 14:20 (Had Spec & Int)]
[Yamanaka, Wed 17:10]

[Ohta, Wed 18:10]
[Harris, Sat 10am]



Mainz (Harris, Sat 10:00) 

Multiple tsink 

Summation and 2-exponential fits

Determination of gA on the Lattice
Excited state contamination
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CSSM/QCDSF (Dragos, Tue 17:30) 

Comparison of various methods for 
suppressing excited states 

Small suppression of gA for small times and 
poor operator choice



Determination of gA on the Lattice

QCDSF: PLB 732 (2014) 41

Renormalisation free ratio

      Ratio extrapolation agrees with exp 

FV effects cancel in HBChPT

Lmπ < 3.4 data point (ensemble VII). This fit, with a
reduced χ2=NDF¼5.9=4, gives gA=Fπ ¼13.88ð29ÞGeV−1

at mπ ¼ 135 MeV which compares well with the
experimental result gA=Fπ ¼ 13.797ð34Þ. Using Fπ ¼
92.21ð15Þ MeV [3] at the physical point as an input, this
gives gA ¼ 1.280ð27Þð35Þ, where the second error corre-
sponds to the overall uncertainty of assigning physical
values to our lattice spacings [54] (not shown in the figure).
We remark that towards the chiral limit gA decreases with
decreasing pion mass while the observed increase of the
ratio gA=Fπ is entirely due to an also decreasing pion decay
constant. Towards large pion masses Fπ will continue to
increase while gA eventually starts decreasing again.

From Fπ=F ¼ 1.0744ð67Þ [78] we obtain the ratio
gA=g0A ¼ 1.050ð14Þ, giving g0A ¼ 1.211ð16Þ using gA ¼
1.2723ð23Þ [3]. Using the normalization conventions

gAðmπÞ ¼ g0A

!
1þ m2

π

16π2F2
b̄þ % % %

"
; ð33Þ

Fπ ¼ F
#
1þ m2

π

16π2F2
l̄4 þ % % %

$
ð34Þ

for the leading chiral corrections, one obtains

gAðmπÞ
Fπ

¼ g0A
F

þ g0A
16π2F3

ðb̄ − l̄4Þm2
π þ % % % : ð35Þ

From our fit we find b̄ − l̄4 ¼ −1.41ð36Þ and, using l̄4 ¼
4.62ð22Þ [78], arrive at the value b̄ ¼ 3.21ð42Þ > 0 for this
LEC: gA increases with the pion mass [as is also obvious
from the ratio gAð135 MeVÞ=g0A > 1 above]. Note how-
ever that gA is expected to start decreasing towards larger
pion masses, due to the effect of the nearby Δð1232Þ
resonance [75,88]. This is also reflected in the lattice data,
see Fig. 15.
We did not detect any lattice spacing effects within our

statistical errors and therefore so far have ignored these.
Not being able to resolve such differences does not mean
they are absent and we will readdress this issue in the
summary Sec. VI.

V. THE SCALAR, TENSOR AND
PSEUDOSCALAR CHARGES

The scalar and tensor couplings can be obtained directly
in the forward limit of Eqs. (1) and (5) while the induced
tensor and pseudoscalar charges are extracted from
extrapolating the respective form factor equations (3)
and (4) to small virtualities. We will also determine the
value of the induced pseudoscalar form factor g&P ¼
~gPðQ2Þ at the virtuality Q2 ¼ −q2 ¼ 0.88m2

μ ≈ 9.82×
10−3 GeV2, corresponding to muon capture [18].

A. The scalar charge gS
In Fig. 20 we show our results for gS as a function of

m2
π . Within their large errors the mπ < 430 MeV data are

consistent with a linear extrapolation and we find no lattice
spacing or volume dependence. The result of such an
extrapolation to the physical point, fitting the six mπ <
300 MeV data points with Lmπ > 3.4 is shown in the
figure. We find gMS

S ð2 GeVÞ ¼ 1.02ð18Þ for a fit with
χ2=NDF ¼ 0.48=4.
The charge gS can, via the conserved vector charge

relation, also be obtained as the ratio of the mass splitting

FIG. 18 (color online). The ratio gAðLÞ=FπðLÞ as a function of
the linear lattice extent for three different pion masses. The error
bands are the predictions of Eq. (32), multiplied by constants
gAð∞Þ=Fπ to match the three data sets. The widths of the error
bands are from varying the ratio g0A=gAð∞Þ ∈ ½0.9; 1.1(.

FIG. 19 (color online). gA=Fπ as a function of m2
π for all

ensembles, together with a linear fit to the low mass points,
omitting the smallest volume (ensemble VII). Symbols are as
in Fig. 1.

NUCLEON ISOVECTOR COUPLINGS FROM Nf ¼ 2 … PHYSICAL REVIEW D 91, 054501 (2015)
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How is the spin of the proton distributed between its constituents? 

Recall Ji’s sum rule: 

Express in terms of moments of Generalised Parton Distributions 

which are obtained from the matrix elements of the energy momentum tensor 

Determine the quark orbital angular momentum 

But

Spin of the Proton
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• First moment of the (isovector) nucleon parton distribution function 

• Notorious for producing lattice results ≈ 2x too large for isovector nucleon 

• Known to be sensitive to excited state contamination 

• Results near physical mass inconclusive

Quark Momentum Fraction

figure) nor for mπ ∼ 295–150 MeV and 3.4 ≤ Lmπ ≤ 4.0
(crosses). At the three values of mπ in the range 422–
150 MeV, where we have more than one volume, we also
find no significant finite volume effects. To emphasize this
point we show the ratio of the three-point to the two-point
functions, Eq. (10), in Figs. 10 and 11 for mπ ∼ 295 MeV
and mπ ∼ 150 MeV, respectively. For the larger pion mass,
the three volumes correspond to Lmπ ∼ 3.42–6.70, while at
the near physical pion mass Lmπ is only varied in the range
2.77–3.49. However, at fixed Lmπ if the finite volume
effects arise from pion exchange, the relative finite volume
correction is proportional tom2

π . Thus, we do not expect the
emergence of significant finite volume effects for larger
volumes for mπ ∼ 150 MeV. In terms of lattice spacing
effects, our analysis is not conclusive. Although no
significant effects are seen, we have leading OðaÞ

discretization errors, and the lattice spacing is only varied
in a very limited range a ∼ 0.08–0.06 fm.
In Ref. [1] we compared our results for ensemble VII,

mπ ∼ 160 MeV (with lower statistics), with earlier, much
larger, Nf ¼ 2 results, also shown in Fig. 9, which used
similar analyses and (nonperturbative) renormalization but
different smearing. At that time, this suggested a strong
dependence on mπ as one approaches the chiral limit.
However, from our present analysis including larger pion
masses, optimized smearing and excited state fits through-
out, we conclude the observed difference is probably due to
excited state contamination (cf. Fig. 1). Nonetheless, there
remains a ∼25% discrepancy with the values obtained from
phenomenological fits to the experimental data1 [34–37].
In Fig. 12 a comparison is made with recent determi-

nations employingNf ¼ 2þ 1 dynamical fermions (LHPC
[11] using tree-level improved clover fermions with 2-HEX
link smearing and RBC/UKQCD [39] with domain wall
fermions) and with Nf ¼ 2þ 1þ 1 and Nf ¼ 2 simula-
tions (ETMC [40,41] using twisted mass fermions). All
collaborations use nonperturbative renormalization and the
unimproved lattice operator. Overall, within the larger
errors of these collaborations, consistency can be seen
with our results (one high statistics ETMC point being the
only exception). Higher precision is needed to resolve any
effects of including strange quarks in the sea or to uncover
discretization effects. For instance, LHPC [11] reports
agreement with the phenomenological value at almost
physical pion masses using, predominantly, coarse

FIG. 10 (color online). The ratio of the three-point to two-point
functions for ensembles IV, V and VI, which have the same β
and κ values but have different spatial extents L. mπ∼
290 MeV for L ¼ 64a.

FIG. 11 (color online). The same as in Fig. 10 for ensembles
VII and VIII. mπ ∼ 150 MeV for L ¼ 64a.

FIG. 12 (color online). Comparison with recent Nf ¼ 2, 2þ 1
and 2þ 1þ 1 simulations from LHPC [11], RBC/UKQCD [39]
and ETMC [40,41]. The results from phenomenological fits
(black points) are the same as in Fig. 9.

1Note that these fits are only performed at next-to-next-to-
leading order while we converted the lattice results from the
RI’-MOM to the MS scheme at three-loop order. We also evolved
the scale to this order. However, differences between running the
scale to 2 GeVat two, three or four loops [38] are only on the few
per mille level.

MOMENT hxiu−d OF THE NUCLEON … PHYSICAL REVIEW D 90, 074510 (2014)

074510-7

RQCD PRD90 (2014) 074510

hxiq =

Z 1

0
dx x

�
q(x) + q̄(x)

�

reasonably identify a plateau over several time slices. The
fit reproduces the data well, with reasonable values of
χ2=d:o:f: < 2, where correlations between time slices and
the different correlators are taken into account. To avoid
any possible bias from an ill-determined covariance matrix,
all final results are taken from uncorrelated fits. The
systematic uncertainty in hxiu−d arising from the choice
of fit is estimated by varying the fitting range for both C2pt

(tmin to tmax) and C3pt (δt to tf − δt) where δt; tmin ≥ 2a is
allowed. The number of tf s used in the fit was also varied.
Note that the fitted value for hxiMS

u−dð2 GeVÞ indicated in
Fig. 2 (the green shaded region) only corresponds to a
single fit, and the errors are purely statistical.
The above approach, which we call “combined” fits, can

be compared to the traditional method of fitting the ratio
C3ptðt; tfÞ=C2ptðtfÞ, for fixed tf , to a constant B0; cf.
Eq. (10). In Fig. 3 one can see that for tf ≥ 11a the results
for the quark momentum fraction are consistent with each
other and are also consistent with the results of the
combined fits. Figures 4 and 5 show the corresponding
results for ensemble VIII. In particular, Fig. 5 suggests tf ¼
15a is sufficient for suppressing excited state contributions
and obtaining ground state dominance for t close to tf=2 at
the present level of statistical errors. However, this con-
clusion is only possible through the use of optimized
smearing and our extensive analysis.
For completeness we also considered the summation

method [22], which has been been advertised in several
recent studies [11,14,28–30]. This involves summing the

ratio of the three-point and two-point functions over a range
of t values:

SðtfÞ ¼
Xtf−δt

t¼δt

C3ptðt; tfÞ=C2ptðtfÞ: ð14Þ

Using Eqs. (11) and (12) one can show that

SðtfÞ ¼
Xtf−δt

t¼δt

½B0 þ B1ðe−Δmðtf−tÞ þ e−ΔmtÞ

þ B2e−Δmtf &½1þ A1eΔmtf=A0&−1 ð15Þ

¼ B0tf þ CþO
!
tfe−Δmtf

"
; ð16Þ

where C contains tf -independent terms. Thus, one can
extract B0 by performing a linear fit to SðtfÞ as a function
of tf . A large number of tf values are required in order to

FIG. 3 (color online). Comparison of the values for
hxiMS

u−dð2 GeVÞ extracted using constant fits to C3pt=C2pt for
different tf s with the result of a combined (simultaneous) fit (C)
to C3pt and C2pt for all tf , for ensemble IV (mπ ∼ 295 MeV).

FIG. 4 (color online). The same as Fig. 2 for ensemble VIII
(mπ ∼ 150 MeV). The same fitting ranges are employed.

FIG. 2 (color online). For ensemble IV (mπ ∼ 295 MeV), the
combination C3ptðt; tfÞ=ðm0A0e−m0tf Þ times the renormalization

factor to give hxiMS
u−dð2 GeVÞ for tf=a ¼ 7; 9; 11; 13; 15; 17.

A0e−m0tf corresponds to the ground state contribution to C2ptðtfÞ
obtainedfromasimultaneousfit toC3pt andC2pt forall tf .Alsoshown
is the combined fit for each tf . The green shaded region indicates
the fitted value of hxiMS

u−dð2 GeVÞ and the corresponding statistical
uncertainty, from a fit in the range tmin − tmax ¼ 2a − 26a for C2pt

and δt ¼ 2a for C3pt.

GUNNAR S. BALI et al. PHYSICAL REVIEW D 90, 074510 (2014)
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Recall Ji’s sum rule requires moments of Generalised Parton Distributions 

E.g. 

Spin of the Proton Ji’s sum rule
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Recall Ji’s sum rule requires moments of Generalised Parton Distributions 

For reliable results for  

need to control systematic errors for          and         

disconnected contribitions for:

Spin of the Proton Ji’s sum rule

Jq/g =
1

2


hxiq/g +B

q/g
20 (q2 = 0)

�

Lq =
1

2


hxiq +B

q
20(q

2 = 0)��q

�

hxiq/g = A

q/g
20 (q2 = 0)

hxiu�dgA

Lq

�q
⇥
gA = �u��d

⇤

hxiq



         is a purely quark-line disconnected contribution


A challenge on the lattice 

Standard procedure: Use stochastic (random noise) sources 

e.g. 


Spin of the Proton
�s
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         is a purely quark-line disconnected contribution


A challenge on the lattice 

Standard procedure: Use stochastic (random noise) sources 

e.g. 


Spin of the Proton
�s

[QCDSF/RQCD PRL108 (2012) 222001]

MS µ =
p
7.4GeV

m⇡ = 285MeV
�s = �0.020(10)(4)

gA = ZNS
A glattA

�⌃ = ZS
A�⌃latt

Also allows for full nonperturbative determination of singlet renormalisation constants

[CSSM/QCDSF, PLB740 (2015) 30]
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Disconnected Spin Contributions �s

 favours a small and negative �s



non-zero charm contribution

hxiqDisconnected Contributions



Ji et al. [PRL 111 (2013) 112002] proposed a glue spin density operator 

Infinite momentum frame 

RBC/UKQCD 2+1 243x48 DWF configs 

Overlap definition of 

Extrapolated to  

Renormalisation soon!

Glue contribution to proton spin
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Tensor Charge, 
Recent interest driven by 

Phenomenological determinations now available using SIDIS data (HERMES, COMPASS) 

Implications for new physics 

Precision neutron    decay studies sensitive to possible BSM scalar and 
tensor interactions 

Require neutron matrix elements of appropriate low-energy operators 

Quantify the contribution of the quark EDM to the nEDM and set bounds on 
new sources of CP violation 

See plenary talk by T. Izubuchi (Tue 11:45)

gT =
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i.e. gu�d
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S

[PNDME 1506.04196, 1506.06411]

[PNDME PRD85 (2012) 054512]

(to ~10%)

(including disconnected)



Tensor Charge, 

Comprehensive study of systematics by PNDME 

Introduced ‘FLAG-like’ colour-coding system for each systematic error 

10% uncertainty target achieved

gT =

Z
dx

⇥
�u(x)� �d(x)

⇤

20

Appendix A: Systematics in the calculation of the
iso-vector nucleon tensor charge

In Table X, we give a summary, in the FLAG for-
mat [43], of the level of control over various systematics
in the calculation of the iso-vector tensor charge of the
nucleon using simulations of lattice QCD with N

f

= 2,
2 + 1 and 2 + 1 + 1 flavors. For completeness, we repro-
duce the quality criteria for the publication status, chiral
extrapolation, finite volume e↵ects, and renormalization
as defined by FLAG [5]. We also define an additional cri-
terion, excited state contamination, relevant to the cal-
culations of matrix elements within nucleon states:

• Publication status:
A published or plain update of published results
P preprint
C conference contribution

• Chiral extrapolation:
F M

⇡,min < 200 MeV� 200 MeV  M
⇡,min  400 MeV

⌅ 400 MeV < M
⇡,min

• Continuum extrapolation:
F 3 or more lattice spacings, at least 2 points
below 0.1 fm� 2 or more lattice spacings, at least 1 point
below 0.1 fm
⌅ otherwise

• Finite-volume e↵ects:
F M

⇡,minL > 4 or at least 3 volumes� M
⇡,minL > 3 and at least 2 volumes

⌅ otherwise

• Renormalization:
F nonperturbative� 1-loop perturbation theory or higher with a
reasonable estimate of truncation errors
⌅ otherwise

• Excited State:
F tsep, max > 1.5 fm or at least 3 source-sink
separations, tsep, investigated at each lattice
spacing and at each M

⇡

.� At least 2 source-sink separations with
1.2 fm  tsep, max  1.5 fm at at least one M

⇡

at
each lattice spacing.
⌅ otherwise

Plots of the data summarized in Table X as a function
of a, M2

⇡

and M
⇡

L are shown in Fig. 12. One observes
very little sensitivity to these three variables and on the
number of fermion flavors or the lattice action used.

0 0.05 0.10 0.15 0.20
0.8

0.9

1.0

1.1

1.2

Mπ
2 (GeV2)

g Tu-
d

PNDME 4f clover/HISQ
ETMC 4f TMF

LHPC 3f clover
LHPC 3f DWF
LHPC 3f DWF/asqtad
RBC/UKQCD 3f DWF

ETMC 2f TMF
RQCD 2f clover

FIG. 12. Estimates of gu�d
T from lattice QCD for Nf = 2,

2 + 1 and 2 + 1 + 1 flavors from the PNDME’15 (this work),
ETMC’14 [30, 31] LHPC’12 [28], RBC/UKQCD’10 [29], and
RQCD’14 [32] collaborations. These data show little sensitiv-
ity to a (top), M2

⇡ (middle), M⇡L (bottom) and on whether
the strange and charm quarks are included in the generation
of the lattice ensembles or on the lattice action used. The
vertical dashed line in the middle panel marks the physical
pion mass M⇡ = 135 MeV.

18

gdT guT gsT µ

This study �0.23(3) 0.77(7) 0.008(9) 2 GeV

Quark model �1/3 4/3 – –

QCD Sum Rules [37] �0.35(17) 1.4(7) – ?

Dyson-Schwinger [38] �0.11(2) 0.55(8) – 2 GeV

Transversity 1 [34] �0.18(33) 0.57(21) – ⇠ 1 GeV

Transversity 1 [34] �0.16(30) 0.51(19) – 2 GeV

Transversity 2 [35] �0.25(20) 0.39(15) – ⇠ 1 GeV

Transversity 3 [36] �0.22+0.14
�0.08 0.39+0.07

�0.11 – 3.2 GeV

TABLE IX. A comparison of our lattice estimates of gdT and guT of the proton with those from di↵erent models and phenomenol-
ogy. The “Transversity 1” estimate is given both at the original scale at which it was evaluated (⇠ 1 GeV) and after running
to 2 GeV to show the magnitude of the scaling e↵ect. The symbol “?” in the last column indicates that the scale at which the
calculation is done is undetermined.
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FIG. 10. A comparison between recent lattice QCD results
for gu�d

T and estimates derived from model calculations and
experimental data. The published lattice QCD results are
from LHPC’12 [28], RBC/UKQCD’10 [29], RQCD’14 [32]
and RBC’08 [33]. Lattice estimates with reasonable con-
trol over excited state contamination and extrapolation to
the physical pion mass and the continuum limit are shown
in green. Estimates from models and phenomenology are
from Bacchetta’13 [34], Anselmino’13 [35], Kang’15 [36], Sum
Rules’00 [37], DSE’14 [38].

given by Eqs. (32) and (30), one can put bounds on the
d
u,d,s

. Using the current estimate |d
N

| < 2.9⇥10�26 e cm
(90% CL) [42], 1-sigma slab priors for gu

T

and gd
T

given
in Eq. (32), and assuming gs

T

= 0, we obtain the 90%
confidence interval bounds for d

u

and d
d

shown in Fig. 11.
Note that d

s

is not constrained since gs
T

is consistent with
zero.

Using these estimates of gu,d,s
T

, we have analyzed the
consequences on split SUSY models, in which the quark
EDM is the leading contribution in [4]. Our goal for the
future is to improve the estimates presented here and
develop the lattice methodology to include the contribu-
tions of the quark chromo electric dipole moment opera-
tor.

FIG. 11. Bounds on the couplings du,d for the case gsT = 0.
Estimates used for guT and gdT are given in Eq. (32).

VI. CONCLUSIONS

We have presented a high statistics study of the iso-
vector and iso-scalar tensor charges of the nucleon us-
ing clover-on-HISQ lattice QCD. We calculate both the
connected and disconnected diagrams contributing to
these charges. The analysis of nine ensembles cover-
ing the range 0.12 � 0.06 fm in lattice spacing, M

⇡

=
130 � 320 MeV in pion mass, and M

⇡

L = 3.2 � 5.4 in
lattice volume allowed us to control the various sources
of systematic errors. We show that keeping one excited
state in the analysis allows us to isolate and mitigate ex-
cited state contamination. The renormalized estimates of
the various tensor charges show small dependence on the
lattice volume, lattice spacing and the light quark mass.
These results can, therefore, be extrapolated reliably to
the physical point.

Our final estimate for the tensor charge gu�d

T

=
1.020(76) is in good agreement with previously reported
estimates. The signal in the calculation of the discon-
nected diagrams is weak in spite of using state-of-the-art

MS µ2 = 4GeV2

[Gupta, Thu 10:40]

PNDME 1506.06411



Scalar Charge, 
Commonly used for     terms 

Recent interest: new physics contributions to     decay:               to 10% 

Severe excited state contamination - take care! 

gu�d
S

gS hN |q̄q|Ni

[PNDME PRD85 (2012) 054512]
�

� �H
l = mlhH|(ūu+ d̄d)|Hi �H

s = mshH|s̄s|Hi
[R.Young, Latt’12 review]

i.e. increasing the minimal distance between the current
and the source-sink δt or reducing the number of tf values
entering the fit. A systematic error was then estimated by
varying the fit range, and the parametrization, e.g., allowing
for B1 ≠ 0 in cases where this parameter was consistent
with zero.
In some publications a dependence of the ratio of the

axial three-point over the two-point function on tf and on t
is reported that is much stronger than what we observe,
see, e.g., Refs. [23,28,36] while the results of, e.g.,
Ref. [39] are quite similar to ours. This motivates us to
compare two different smearing methods found in the
literature on ensemble IX: Jacobi smearing [66] and
Wuppertal smearing [59]. With the optimized root mean
squared smearing radius4 rRMS ≈ 0.58 fm both methods
give similar results, see the comparison between the Nsm ¼
225 Jacobi and the Nsm ¼ 400 Wuppertal smearing in
Fig. 5. In these cases the parameter B01 is statistically
compatible with zero. Without realizing additional tf values
we cannot determine B1 but, based on our detailed
investigations on ensembles III, IVand VIII, it is reasonable

to assume that the effect of this term is statistically
insignificant at tf ¼ 17a ≈ 1.03 fm.
For the Jacobi algorithm additionally we realize

Nsm¼75, reducing the smearing radius to rRMS≈0.37 fm
and rRMS ≈ 0.34 fm with and without APE smearing,
respectively. This results in some curvature due to the
effect of excited states, i.e. the parameter B01 now signifi-
cantly differs from zero. Comparing the two Nsm ¼ 75
results illustrates that APE smearing the spatial gauge links
is less important than varying the number of smearing
iterations. However, APE smearing further increases the
overlap with the physical ground state.
For tf → ∞ and t ≈ tf=2 obviously all four data sets must

approach the same asymptotic value. However, from the
comparison shown in Fig. 5 it is clear that with the two
inferior smearing functions tf needs to be chosen much
larger—or at least additional source-sink distances need to
be realized, to enable a determination of the parameters B1

and B01 and a subsequent extrapolation. Otherwise, in these
cases an incorrect result would be obtained: Clearly, the
minimal sensible value of tf does not only depend on the
statistical accuracy but also on the quality of the inter-
polator. For instance, an ideal interpolator Φ with 100%
ground state overlap would, up to issues related to the
locality of the action, eliminate the time dependence
altogether.
In Fig. 6 we show data for the renormalized scalar

density for the same mπ ≈ 150 MeV ensemble as in Fig. 4.
In this case B01 significantly differs from zero. We divide

FIG. 5 (color online). The ratio of the three- over the two-point
function for gA at tf ¼ 17a on ensemble IX (mπ ≈ 490 MeV,
a ≈ 0.060 fm) with different smearing methods.

FIG. 6 (color online). The combination C3ptðt; tfÞ=ðA0e−mNtf Þ
with tf=a ∈ f9; 12; 15g on ensemble VIII (mπ ≈ 150 MeV,
a ≈ 0.071 fm), multiplied by the appropriate renormalization
factors to give gMS

S ð2 GeVÞ. A0e−mNtf corresponds to the ground
state contribution to C2ptðtfÞ obtained from a simultaneous fit
according to Eqs. (14) and (15) to C3pt and C2pt. The fit ranges
were tf=a ∈ ½2; 26% for C2pt and δt ¼ 2a for C3pt where B1 is set
to zero. Also shown are the resulting fit curves for each tf . The
shaded region indicates the fitted value of gMS

S ð2 GeVÞ and the
corresponding statistical uncertainty.

4All three quarks within the interpolator Φ†, used to create a
state with the quantum numbers of the nucleon, are smeared
applying the same matrix A to δ sources. For the case of
Wuppertal smearing this matrix A with space and color indices
is iteratively defined in Eq. (11). We compute a gauge invariant
smearing function ψðrÞ ≥ 0: ψ2ðrÞ ¼

P
abjðAδaÞr;bj2, where the δ

source has only one nonvanishing entry, at the spatial origin and
of color a. The RMS radius is computed in the usual way:
r2RMS ¼ ½

P
nr

2ψðnaÞ%=½
P

nψðnaÞ%, where the sum extends over
all (three-dimensional) lattice points and r2 ¼

P
i min½ðaniÞ2;

ðani − LÞ2%, taking account of the periodic boundary conditions.
In principle one could also, by analogy with quantum mechanics,
define rRMS with a weight factor ψðrÞ2, rather than ψðrÞ. Due to
the approximately Gaussian profile, this definition will result in a
radius that is smaller by a factor of about

ffiffiffi
2

p
than the numbers we

quote.
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Several new simulations with near-physical quark masses 

LHPC [PRD90 (2014) 074507] 

Mainz [arXiv:1504.04628] 

PACS-CS 

PNDME 

Progress in accounting for excited state contamination 

Electromagnetic Form Factors

m⇡ ⇡ 149MeV

m⇡ ⇡ 193MeV

m⇡ ⇡ 145MeV

m⇡ ⇡ 130MeV

Yamazaki, Wed 14:20 
(Had Spec & Int)

Gupta, Thu 10:40 

Shintani, Wed 17:30 



Electromagnetic Form Factors Shintani, Wed 17:30 

Mainz [arXiv:1504.04628]

9

FIG. 4. Dipole fits of the Q2 dependence of G
E

, as determined using the plateau method (shown in blue), summed insertions
(red) and two-state fits (green). The left and right panels correspond to pion masses of 331 and 193 MeV, respectively. The
black line denotes Kelly’s parameterization of experimental data.

FIG. 5. Dipole fits of the Q2 dependence of G
M

. The meaning of the symbols is identical to Fig. 4.

cedure resembles the strategy pursued in [32] to extract
charge radii and magnetic moments from experimental
data of nucleon form factors. In particular, we focus on
fitting the dependence of the form factors G

E

and G

M

on
the pion mass and the squared momentum transfer Q2 to
the expressions of baryonic e↵ective field theory (EFT),
including vector degrees of freedom. The relevant EFT
expressions for G

E

and G

M

have been supplemented by
terms which describe the dependence on the lattice spac-
ing a. In this way we combine a simultaneous chiral and
continuum extrapolation with a fit to the Q2-dependence
of form factors. In order to enable a comparison with the
standard approach we also perform fits to the pion mass
dependence of charge radii and the magnetic moment to

several variants of HBChPT.

Specifically we consider the manifestly Lorentz-
invariant e↵ective Lagrangian describing ⇡N interactions
including vector mesons at O(q3) in the chiral expansion.
A detailed discussion of this e↵ective Lagrangian can be
found in [32]. Table III gives an overview of the various
interaction terms, as well as the associated low-energy
constants and hadron masses. From the table one can
read o↵ which low-energy constants are determined by
our fitting procedure and which phenomenological infor-
mation is used to fix the values of the remaining ones.
We note that the interaction terms proportional to c

7

and d

7

do not contribute in the iso-vector case consid-
ered here. We have also dropped the contributions from

10

FIG. 6. The Q2-dependence of G
M

/G
E

.

FIG. 7. Comparison of the three methods for extracting the nucleon form factors G
E

(left) and G
M

(right) at a fixed value of
Q2. Shown are, from top to bottom, the results from the plateau method, summation method, and two-state fit, as a function
of m2

⇡

.

the !-meson entirely, since they were found to have only
a negligible e↵ect on the results [32]. Furthermore, in
ref. [65] it was shown that the universal ⇢-meson coupling
constant g can be fixed via the Kawarabayashi-Suzuki-
Riadzuddin-Fayyazuddin (KSRF) relation [66, 67], which
follows by requiring the self-consistency of an e↵ective
chiral theory involving pion, nucleons and the ⇢-meson.

The full expressions for the chiral expansions of the
Dirac and Pauli form factors to O(q3) are given in ap-
pendix D.2 of ref. [68] but are too lengthy to be displayed
here. Starting from those formulae, we have formed the
appropriate linear combinations for the iso-vector form
factors G

E

and G

M

. The resulting expressions were
used to perform a simultaneous fit to both G

E

(Q2) and
G

M

(Q2) obtained for a range of pion masses and mo-
mentum transfers, at all three values of the lattice spac-

ing.3 Cuto↵ e↵ects can be easily incorporated into this
framework by adding terms proportional to the lattice
spacing a to the form factors, i.e.

G

E

(Q2) = G

EFT

E

(Q2) + aQ

2

�

E

,

G

M

(Q2) = G

EFT

M

(Q2) + a�

M

, (30)

where G

EFT

E,M

denote the continuum EFT expressions for
the form factors, while the coe�cients �

E,M

are taken as
fit parameters. This ansatz takes account of the fact that
the matrix element corresponding to the electric form
factor isO(a)-improved at vanishing momentum transfer.

3 To evaluate the loop integrals appearing in the expressions, we
make use of LoopTools [69, 70].
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Good agreement with parameterisation of experimental data

Electromagnetic Form Factors
Form Factors
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2.4 Isovector electric and magnetic Sachs form factors

The Dirac and Pauli form factors F1(q2) and F2(q2) are related to the electric GE(q2) and
magnetic GM(Q2) Sachs form factors as

GE(q2) = F1(q
2) − q2

4m2
N

F2(q
2)

GM(q2) = F1(q
2) + F2(q

2)

which are directly measured from two-types of three-point functions (V4 current with a
projection 1+γ4 and V1,2 current with a projection (1+γ4)γ5γ3). The isovector form factor
is given by a difference between the proton and neutron form factors as Gv

k(q
2) = Gp

k(q
2)−

Gn
k(q2) (k = E or M). (See details in Phys. Rev. D 78, 014510 (2008) [arXiv:0709.3150].)
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m
π
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Figure 6: The isovector electric GE form factor. The experimental curves are given by a

dipole form with the root mean squared radius:
√
⟨(rv

E)2⟩=0.939(5) fm.

• Signal of electric type of the three-point functions is less noisy

• In a good agreement with the experimental curve especially for low Q2.

5

0 0.1 0.2 0.3 0.4 0.5
Q2 [(GeV)2]

0

1

2

3

4

5

G
M

(Q
2 )/G

E(
0)

m
π
=0.145 GeV (very preliminary)

Experiment
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Figure 7: The isovector magnetic GM form factor (right). The experimetal curves are

given by a dipole form with the root mean squared radius:
√
⟨(rv

M)2⟩=0.862(14) fm.

• Still statistical fluctuations in magnetic type of the three-point functions are quite
large compared with the electric one

• Needs more statistics
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Lattice form factors now available with physical masses 

(Direct or small chiral extrapolation) 

Determine accurate radii @                         : 

Use finite-volume and excited-state corrected results 

Need small                                       (2π threshold) 

dipole fit to large Q2 data introduces unwanted model dependence 

“z-fit” [Hill & Paz, PRD82 (2010) 113005 ] more reliable

Charge Radius

m⇡ ⇡ 140MeV

Q2 < 4m2
⇡ ⇠ 0.08GeV2

2

FIG. 1: Extractions of the proton charge radius from muonic hydrogen measurements [1, 2], hydrogen
spectroscopy [3], electron scattering measurements at Mainz [6, 7], and a global analysis of earlier world
data [4]. The direct average shown is compared to the CODATA-2010 evaluation [3]. Figure courtesy of
Randolf Pohl.

warranted. While none of these appear likely to resolve to the discrepancy with muonic hydrogen

measurements, some issues remain which deserve more detailed examination.

II. GENERAL ISSUES IN THE EXTRACTION OF THE RADII

One obtains the charge and magnetic form factors, GE(Q2) and GM(Q2), from unpolarized

cross section measurements by performing a Rosenbluth separation [9] which uses the angle-

dependence at fixed Q2 to separate the charge and magnetic contributions. The cross section at

fixed Q2 is proportional to the ’reduced’ cross section σR = τG2
M + εG2

E, where τ = Q2/(4M2
p )

and ε−1 = [1 + 2(1 + τ) tan2(θ/2)]. At low Q2, the magnetic contribution is strongly suppressed

except for very small ε values, corresponding to large scattering angle. Because of the difficul-

ties in making very large angle scattering measurements at low Q2, a significant extrapolation to

ε = 0 is required and even sub-percent uncertainties on the cross sections can yield significant

uncertainties on small contribution from GM(Q2).

Because one often combines data from many experiments, each of which has an uncertainty in

its normalization uncertainty, the normalizations factors of the limited number of large-angle data

sets have a great impact on the extraction of GM . If these normalization factors are allowed to

vary in the fit, which is the most common approach, then a small shift in normalization between

large and small angle data sets can yield a significant shift of strength between GE and GM over

a range in Q2 values. Polarization observables are sensitive to the ratio GE/GM [10, 11] and can

thus provide not only direct information on the form factors, but also improve the determination
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Application of Feynman-Hellmann to form factors 

Only require 2-point functions                 simple excited state removal 

Choose Breit frame kinematics                                   

        single exponential                        look for energy shifts

Large Q2
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|~q| = 2|~p| = 2|~p 0|

non-zero result at ~8 GeV2!
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Experimental determination of neutron EM form factors difficult since 

Neutron has no charge                       naturally small 
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requires corrections for nuclear effects (Fermi motion, Final State 
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Magnetic moments and polarizabilities of nucleons and light nuclei with A ≤ 4 

Employ background magnetic fields 

Compare with shell model predictions 

shell-model configuration captures their dominant structures 

Deviations similar to experiment 

Implications for experiments using                              for neutron properties 

Magnetic Structure of Light Nuclei
[NPLQCD PRL 113 (2014) 252001 & 1506.05518]

m⇡ ⇡ 800MeV

2H, 3H, 3He

degree, with the nucleon mass. The success of the non-
relativistic quark model (NRQM) in describing the
magnetic moments of the lowest-lying baryons as the
sum of contributions from three weakly bound nonrelativ-
istic quarks, with up- and down-quark masses of MU;D ∼
300 MeV and strange-quark mass of MS ∼ 500 MeV,
suggests that naive scaling with the hadron mass should
capture most of the quark-mass dependence. From the
perspective of chiral perturbation theory (χPT), the leading
contributions to the nucleon magnetic moments are from
dimension-five operators, with the leading quark-mass
dependence arising from mesons loops that are suppressed
in the chiral expansion, and scaling linearly with the mass
of the pion. Consistency of the magnetic moments calcu-
lated in the NRQM and in χPT suggests that the nucleon
mass scales linearly with the pion mass, which is incon-
sistent with chiral power counting, but consistent with the
results obtained from analysis of lattice QCD calculations
[24]. It should be emphasized that the magnetic moments of
the light nuclei that we study here are well understood in
the context of nuclear chiral effective field theory, where
pions and nucleons are the effective degrees of freedom,
and heavier meson-exchange-type contributions are
included as various contact interactions among nucleons
(see, for instance, Ref. [25]).
The present calculations have been performed at a single

lattice spacing and in one lattice volume, and the lack of
continuum and infinite volume extrapolations introduces
systematic uncertainties into our results. Chiral perturba-
tion theory can be used to estimate the finite volume (FV)
effects in the magnetic moments, using the sum of the
known [26] effects on the constituent nucleons. These
contributions are≲1% in all cases. There may be additional

effects beyond the single particle contributions; however,
the binding energies of light nuclei calculated previously in
multiple volumes at this quark mass [4] demonstrate that
the current lattice volume is large enough for such FV
effects to be negligible. In contrast, calculations with
multiple lattice spacings have not been performed at this
heavier pion mass, and, consequently, this systematic
uncertainty remains to be quantified. However, electro-
magnetic contributions to the action are perturbatively
improved as they are included as a background field in
the link variables. Consequently, the lattice spacing arti-
facts are expected to be small, entering atOðΛ2

QCDa
2Þ ∼ 3%

for ΛQCD ¼ 300 MeV. To account for these effects, we
combine the two sources of uncertainty in quadrature and
assess an overall multiplicative systematic uncertainty of
3% on all the extracted moments. For the nuclei, this is
small compared to the other systematic uncertainties, but
for the neutron, in particular, it is the dominant uncertainty.
In conclusion, we have presented the results of lattice

QCD calculations of the magnetic moments of the lightest
nuclei at the flavor SU(3) symmetric point. We find that,
when rescaled by the mass of the nucleon, the magnetic
moments of the proton, neutron, deuteron, 3He, and triton
are remarkably close to their experimental values. The
magnetic moment of 3He is very close to that of a free
neutron, consistent with the two protons in the 1s state spin
paired to jp ¼ 0 and the valence neutron in the 1s.
Analogous results are found for the triton, and the magnetic
moment of the deuteron is consistent with the sum of the
neutron and proton magnetic moments. This work dem-
onstrates for the first time that QCD can be used to calculate
the structure of nuclei from first principles. Calculations
using these techniques at lighter quark masses and for
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FIG. 3 (color online). The magnetic moments of the proton,
neutron, deuteron, 3He, and triton. The results of the lattice QCD
calculation at a pion mass of mπ ∼ 806 MeV, in units of natural
nuclear magnetons (e=2Mlatt

N ), are shown as the solid bands. The
inner bands corresponds to the statistical uncertainties, while the
outer bands correspond to the statistical and systematic uncer-
tainties combined in quadrature, and include our estimates of the
uncertainties from lattice spacing and volume. The red dashed
lines show the experimentally measured values at the physical
quark masses.

d

3He

3H

!0.6

!0.4

!0.2

0.0

0.2

0.4

0.6

δµ
[n

N
M

]

FIG. 4 (color online). The differences between the nuclear
magnetic moments and the predictions of the naive shell model.
The results of the lattice QCD calculation at a pion mass of
mπ ∼ 806 MeV, in units of natural nuclear magnetons (e=2Mlatt

N ),
are shown as the solid bands. The inner band corresponds to the
statistical uncertainties, while the outer bands correspond to the
statistical and systematic uncertainties combined in quadrature,
including estimates of the uncertainties from lattice spacing and
volume. The red dashed lines show the experimentally measured
differences.
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• Understanding hidden flavour  -  A fundamental challenge of hadronic physics 

• Contributions arise entirely through interactions with QCD vacuum 

• Extensive experimental searches 

• JLAB (G0, HAPPEX), MIT-Bates (SAMPLE), Mainz (A4)

Strangeness Form Factors

4

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4-0.15

-0.1

-0.05

0

0.05

0.1

0.15

E
sG

M
sG

H)
1

G
0-backw

ard (

G0-forwardHAPPEX-III
68.3%
95%

FIG. 2: Constraints on Gs
E and Gs

M at Q2 ⇠ 0.62GeV2.
The experimental bands are from the results presented in this
letter (HAPPEX-III) and the G0 measurements [7, 17].

is small for forward-angle studies where the small coef-
ficient

p
1� ✏2(1 � 4 sin2 ✓W ) suppresses the axial term.

The uncertainty in these corrections, as a fraction of the
axial form factor, is assumed to be constant with Q2.
Standard electroweak corrections [16] are also included
in ANS and contribute negligible uncertainty. Additional
radiative corrections involving two-photon exchange, ex-
pected to be at the level of 0.03% [14], are neglected.
Comparing ANS to the measured APV , the strange-quark
contributions are determined to be Gs

E + 0.517 Gs
M =

0.003± 0.010± 0.004± 0.009, where the error bars corre-
spond to statistical, systematic, and the ANS uncertain-
ties, respectively.

Our result is compared to previous measurements from
the HAPPEX collaboration in Fig. 1, which displays
(APV � ANS )/ANS , the fractional deviation from the-
oretical expectation in the absence of strange-quark con-
tributions. TheQ2 and specific form-factor sensitivity for
each measurement are noted on the figure. The error bars
include experimental uncertainties, while the uncertainty
in ANS is taken to be zero for this plot. For forward angle
scattering at each indicated Q2, the HAPPEX measure-
ments represent the most accurate determinations of the
strange vector matrix elements; they show no indication
of a signal for strange-quark contributions to the form
factors.

The constraints on the 2-D space spanned by Gs
E and

Gs
M from all measurements near Q2 ⇠ 0.62GeV2 are

shown in Fig. 2. The experimental constraints at 1�
are represented by the shaded bands indicating the com-
bined statistical and experimental systematic error bars.
The contours, representing the 68% and 95% uncertainty
boundaries as indicated, combine all three measurements
and also account for the uncertainties in ANS . The in-

FIG. 3: Results of strange-quark vector form factors for all
measurements of forward-angle scattering from the proton.
The global fit is described in the text. The solid curve repre-
sents a 3% contribution to the comparable linear combination
of proton form factors.

dependently separated values resulting from this fit are
Gs

E = 0.047 ± 0.034 and Gs
M = �0.070 ± 0.067, with a

correlation coe�cient of �0.93. The combined constraint
is consistent with Gs

E = Gs
M = 0.

Figure 3 shows all published data on the net
strangeness contribution Gs

E + ⌘Gs
M in forward-angle

scattering measurements from the proton versus Q2.
Here, ⌘ = ⌧Gp

M/(✏Gp
E), and is approximately numeri-

cally equal to Q2/(GeV2) over the range of the plot.
Data from the HAPPEX [10, 11], G0 [7], and A4 [8, 9]
collaborations are shown. On each data point, the error
bars indicate both the statistical error and the quadra-
ture sum of statistical and uncorrelated systematic error.
For the G0 data, some systematic uncertainties are corre-
lated between points with a magnitude indicated by the
shaded region at the bottom of the plot. A shaded re-
gion around the zero-net-strangeness line represents the
uncertainties in ANS at 1�; this uncertainty is not also
included in the individual data points.

While there is no reliable theoretical guidance on the
possible Q2-dependence of the strange form factors, it is
reasonable to expect that they would not change rapidly
with Q2, consistent with nucleon form factors in this
range which are described to a reasonable precision by
smooth dipole or Galster parameterizations [14]. The
cross-hatched region displays the 1� region allowed by
a leading-order fit in which Gs

M is taken to be constant
and Gs

E is proportional to Q2. This parameterization fol-
lows that of [18, 19]. The fit includes all published data,
including HAPPEX-II 4He [11] and backward-angle pro-
ton measurements [17, 20, 21], and takes the correlated
uncertainties in the G0 forward-angle data into account
but neglects the uncertainty in ANS . The confidence

4

FIG. 2: Constraints on Gs
E and Gs

M at Q2 ⇠ 0.62GeV2.
The experimental bands are from the results presented in this
letter (HAPPEX-III) and the G0 measurements [7, 17].

is small for forward-angle studies where the small coef-
ficient

p
1� ✏2(1 � 4 sin2 ✓W ) suppresses the axial term.

The uncertainty in these corrections, as a fraction of the
axial form factor, is assumed to be constant with Q2.
Standard electroweak corrections [16] are also included
in ANS and contribute negligible uncertainty. Additional
radiative corrections involving two-photon exchange, ex-
pected to be at the level of 0.03% [14], are neglected.
Comparing ANS to the measured APV , the strange-quark
contributions are determined to be Gs
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spond to statistical, systematic, and the ANS uncertain-
ties, respectively.

Our result is compared to previous measurements from
the HAPPEX collaboration in Fig. 1, which displays
(APV � ANS )/ANS , the fractional deviation from the-
oretical expectation in the absence of strange-quark con-
tributions. TheQ2 and specific form-factor sensitivity for
each measurement are noted on the figure. The error bars
include experimental uncertainties, while the uncertainty
in ANS is taken to be zero for this plot. For forward angle
scattering at each indicated Q2, the HAPPEX measure-
ments represent the most accurate determinations of the
strange vector matrix elements; they show no indication
of a signal for strange-quark contributions to the form
factors.

The constraints on the 2-D space spanned by Gs
E and
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M from all measurements near Q2 ⇠ 0.62GeV2 are

shown in Fig. 2. The experimental constraints at 1�
are represented by the shaded bands indicating the com-
bined statistical and experimental systematic error bars.
The contours, representing the 68% and 95% uncertainty
boundaries as indicated, combine all three measurements
and also account for the uncertainties in ANS . The in-
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dependently separated values resulting from this fit are
Gs

E = 0.047 ± 0.034 and Gs
M = �0.070 ± 0.067, with a

correlation coe�cient of �0.93. The combined constraint
is consistent with Gs

E = Gs
M = 0.

Figure 3 shows all published data on the net
strangeness contribution Gs

E + ⌘Gs
M in forward-angle

scattering measurements from the proton versus Q2.
Here, ⌘ = ⌧Gp

M/(✏Gp
E), and is approximately numeri-

cally equal to Q2/(GeV2) over the range of the plot.
Data from the HAPPEX [10, 11], G0 [7], and A4 [8, 9]
collaborations are shown. On each data point, the error
bars indicate both the statistical error and the quadra-
ture sum of statistical and uncorrelated systematic error.
For the G0 data, some systematic uncertainties are corre-
lated between points with a magnitude indicated by the
shaded region at the bottom of the plot. A shaded re-
gion around the zero-net-strangeness line represents the
uncertainties in ANS at 1�; this uncertainty is not also
included in the individual data points.

While there is no reliable theoretical guidance on the
possible Q2-dependence of the strange form factors, it is
reasonable to expect that they would not change rapidly
with Q2, consistent with nucleon form factors in this
range which are described to a reasonable precision by
smooth dipole or Galster parameterizations [14]. The
cross-hatched region displays the 1� region allowed by
a leading-order fit in which Gs

M is taken to be constant
and Gs

E is proportional to Q2. This parameterization fol-
lows that of [18, 19]. The fit includes all published data,
including HAPPEX-II 4He [11] and backward-angle pro-
ton measurements [17, 20, 21], and takes the correlated
uncertainties in the G0 forward-angle data into account
but neglects the uncertainty in ANS . The confidence

Q2 = 0.62GeV2

[HAPPEX-III PRL108 (2012) 102001]



• Implications for experimental determination of the proton’s weak charge 

•          : neutral current analog to the proton’s electric charge 

• Precisely predicted to be small in the SM 

• Constrain new parity-violating (PV) physics between electrons and light 
quarks 

Strangeness Form Factors

[Qweak PRL111 (2013) 141803]
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ing experiments [5–7, 9–11, 13, 14]. The coe�cient ⌘ depends
on the scattering angle and Q2; for the lattice data we use the
approximation ⌘ = AQ2, A = 0.94 GeV�2 [10]. In the low
Q2 region we also show the linear dependence on Q2 resulting
from the estimated charge radius and magnetic moment at
the physical point.

we observe, suggesting that the quark masses are too
large for ChPT at this order. Therefore, we resort to a
simple linear interpolation in m2

loop

. We also adjust to
the physical nuclear magneton, and obtain at the physi-
cal point:

(r2E)s = �0.0067(10)(17)(15) fm2,

(r2M )s = �0.018(6)(5)(5) fm2,

µs = �0.022(4)(4)(6) µN ,
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FIG. 5. Determinations of the strange magnetic moment:
from direct lattice QCD calculations (this work and Ref. [17];
red circles), models and phenomenology [16, 29–33] (green
squares), and from a recent global analysis of parity-violating
elastic scattering data [34] (blue diamond).

where the first two uncertainties are statistical and sys-
tematic (as estimated above). The third error is the dif-
ference between the value at the physical point and on
our lattice ensemble (using the physical nuclear magne-
ton), and serves as an estimate of the uncertainty due to
extrapolation to the physical point.

The experiments run at forward scattering angles were
sensitive to a particular linear combination of form fac-
tors, Gs

E + ⌘Gs
M , which we show in Fig. 4. Our results

and the experimental data are both broadly consistent
with zero, although the lattice data have much smaller
uncertainties. This suggests that it will be quite chal-
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Presents a challenge for the next generation of experiments 

Reached a precision where violations of charge symmetry will become important



Experimental determinations of                   rely on charge symmetry  

(As does the inclusion of nuclear data for Qweak) 

EM and weak interactions give access to different combinations of  

Assume charge symmetry

Charge Symmetry
u quarks in the proton d quarks in the neutron
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Determine the degree to which charge symmetry is violated in EM form factors by  

Combining chiral perturbation theory fits to isospin-averaged hyperon FFs 

Input                from experiment (or FLAG)

Charge Symmetry Violation

mu/md

[CSSM/QCDSF PRD91 (2015) 113006]



Determine the degree to which charge symmetry is violated in EM form factors by  

Combining chiral perturbation theory fits to isospin-averaged hyperon FFs 

Input                from experiment (or FLAG)

Charge Symmetry Violation
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(a) (b)

Figure 1: Isovector form factors extrapolated to the physical point. Extrapolations (at fixed Q2-values) of the magnetic (a) and
electric (b) isovector nucleon form factors to infinite volume and the physical pseudoscalar masses are shown compared with the
Kelly parameterisation27 of experimental results (dashed red band). The blue circles and green crosses denote results derived from
the L3 ⇥ T = 323 ⇥ 64 and 483 ⇥ 96 sets of simulations respectively.
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Figure 2: CSV form factors as relevant to experimental determinations of nucleon strangeness. The blue circles and green crosses
on the figures showing the (a) magnetic and (b) electric CSV terms denote the L3 ⇥ T = 323 ⇥ 64 and 483 ⇥ 96 sets of simulation
results respectively.

mu/md

[CSSM/QCDSF PRD91 (2015) 113006]

a = 0.074 fm

a = 0.061 fm



Determine the degree to which charge symmetry is violated in EM form factors by  

Combining chiral perturbation theory fits to isospin-averaged hyperon FFs 

Input                from experiment (or FLAG)
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Figure 1: Isovector form factors extrapolated to the physical point. Extrapolations (at fixed Q2-values) of the magnetic (a) and
electric (b) isovector nucleon form factors to infinite volume and the physical pseudoscalar masses are shown compared with the
Kelly parameterisation27 of experimental results (dashed red band). The blue circles and green crosses denote results derived from
the L3 ⇥ T = 323 ⇥ 64 and 483 ⇥ 96 sets of simulations respectively.
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on the figures showing the (a) magnetic and (b) electric CSV terms denote the L3 ⇥ T = 323 ⇥ 64 and 483 ⇥ 96 sets of simulation
results respectively.

mu/md

[CSSM/QCDSF PRD91 (2015) 113006]

a = 0.074 fm

a = 0.061 fm

Charge symmetry satisfied to better than 0.2% (QCD) 

Violations due to QED? Challenge for future QCD+QED simulations



Pion Form Factor
• Asymptotic normalisation known from                    decay 

• Allows to study the transition from the soft to hard regimes 

• Low Q2: measured directly by scattering high energy pions from atomic electrons 

•   precise determination of 

• High Q2: quasi-elastic scattering off virtual pions 

• Model dependence

⇤ � µ + ⇥

F�(Q2 �⇥) =
16⇥�s(Q2)f2

�

Q2
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��

��

F�(Q2)

p n

�r2
��



Pion Form Factor
• JLQCD: overlap quarks,                                     (all-2-all propagators) 

• NNLO SU(3) ChPT + N3LO analytic [Bijnens-Ecker, 2014 ] combined fit to 

[T. Kaneko, Tue 16:30 (WD & ME)]

290  m⇡  540MeV

EM FFs 

z  |Cπ+
πt|, |Cπ+

Kπt|, |CK0| ～ 1 - 6 x 10-5   ⇔   poorly known, Ci ～ (4𝜋) ‒ 4 = 4 x 10-5 

z L9(Mρ)=   4.6(1.1)(0.5)  x 10-3   ⇔  5.9(0.4) x 10-3   (𝐹𝑉𝜋+ ,  Bijnens-Talavera, 2002) 
 
z Ct = C88 – C90 = - 6.4(1.1)(0.1)  x 10-5    ⇔  - 5.5(0.5) x 10-5  (BT, 2002) 

simultaneous fit to π+, K+, K0 EM FFs 

π+ EM FF 
z reasonable convergence 
 = dominated by NLO 2L9t / Fπ2 

z circles/squares  :   value @ simulation pts. from F(t) =  1 / (1- t /MV
2) + …   

z radii are consistent with experiment 

𝑟2 𝑉
𝜋+ = 0.458(15)(38) fm2,  𝑟2 𝑉

𝐾+ = 0.380(12)(32) fm2,  𝑟2 𝑉
𝐾0 = - 0.055(10)(45) fm2  

  ⇔ PDG’14 :    𝑟2 𝑉
𝜋+ = 0.452(11) fm2 ,   𝑟2 𝑉

𝐾+ = 0.314(35) fm2,   𝑟2 𝑉
𝐾0  = - 0.077(10) fm2 

EM FFs 
charge radii 

K0 

π+  

[Bijnens-Ecker, 2014 ]

hr2⇡+i = 0.458(15)(38) fm2, hr2K+i = 0.380(12)(32) fm2, hr2K0i = �0.055(11)(45) fm2

hr2⇡+i = 0.452(11) fm2, hr2K+i = 0.314(35) fm2, hr2K0i = �0.077(10) fm2PDG’14:

F⇡+(q2), FK+(q2), FK0(q2)



Pion Form Factor
Access large Q2 via Feynman-Hellmann

[R. Young, Thu 8:30am]

m⇡ ⇡ 470MeVVMD

VMD mphys
⇡

pQCD

pQCD

m⇡ ⇡ 470MeV

mphys
⇡



Relevant for experiments at JLab and Mainz studying hadronic excitations 

Develop framework for other radiative processes, e.g.

[CSSM 1505.02876]
⇢ ! ⇡�

PACS-CS 2+1 Clover  

Variational method to remove excited 
states

156  m⇡  700MeV

5

relevant to this work. Furthermore the decay thresholds
were found to lie well away from the extracted energies.
For the particular kinematics and parameters consid-

ered in this work, we find that the determinations of
GM1 with the pion at rest all lie below Q2 = 0, while
those with the rho meson at rest lie above. This gives
us values for GM1 on either side of Q2 = 0. In order to
compare with experiment and quark model expectations
we require a determination of GM1(0). To do this we
choose to interpolate between our extracted values using
a monopole ansatz

GM1(Q
2) =

(

Λ2

Λ2 +Q2

)

GM1(0) . (9)

This choice is motivated by vector meson dominance
(VMD) arguments which suggest the form factor should
exhibit such a behaviour in the region of low Q2. In these
models, the pole mass is identified as the vector meson,
i.e. Λ ≃ mρ. In Ref. [6], it was found that the VMD
hypothesis faired poorly with the data, however we note
that this study was conducted with rather large values
of Q2 stemming from their small lattice volume. Con-
trary to this, the results of Edwards [8] which examined
the transition over a range of Q2 between 0.02–0.6 GeV2,
display behaviour consistent with this expectation.
During the extraction of the quark sector contributions

to the form factor, we compared the time-series for the
ratio using the correlation matrix approach and the stan-
dard single smeared source and sink correlator. For all
masses and kinematics, we again find that the correla-
tion matrix method improves the quality of the plateau
over modest levels of smearing, however not to the extent
observed in previous works [13, 14]. In particular, the ra-
tio sampling in the time-like region requires significantly
more Euclidean time evolution than the corresponding
ratio sampling the space-like region. We note that in
this case the rho meson carries the momentum and the
pion is at rest. Figure 2 highlights this comparison for a
single quark mass.
In Fig. 3 we present our results for the extracted val-

ues for the u-quark sector contribution to the form factor,
Gu

M1, as well as the corresponding interpolations used to
extract Gu

M1(0). Here we choose to label these as the
quark sector contributions to the positive-charge eigen-
state of the corresponding iso-triplet. That is, the quark
contribution is labelled as the u-quark sector while the
anti-quark contribution is labelled as the d-quark sector.
As was mentioned in the previous section, the anti-quark
contribution is equal in magnitude with opposite sign,
Gd

M1 = −Gu
M1, and so we choose to show the quark con-

tribution only. The quark sector contributions are for
quarks of unit-charge. We note that the spread of Q2

sampled is much larger in the time-like region due to the
increasing Q0-component stemming from the Goldstone
nature of the pion. In the space-like region, we see this
effect is suppressed when the momentum is coupled to
the pion. This tight grouping of Q2 values shows a clear
decrease in the value of Gu

M1 as the quark masses get
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(a) Gu
M1

with the π at rest.
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M1

with the ρ at rest.

FIG. 2. A comparison of the u-quark contribution to the
transition form factor, Gu

M1, as a function of Euclidean sink
time for a single level of smearing and our variational ap-
proach. The two data sets are offset for clarity. The upper
figure is for the π meson at rest with the (blue) circles de-
noting the results from the variational approach while the
(red) squares illustrate traditional results using the standard
single-source method with a moderate level of smearing (35
sweeps). The lower figure is for the ρ meson at rest with
the (green) triangles denoting the variational method and the
(purple) diamonds denoting the single-source method. The
vertical dashed line indicates the position of the current in-
sertion. The fitted value from the variational approach has
been included (shaded band) to highlight where the single
source approach is consistent with our improved method.

lighter.

In the time-like region, the most striking feature is the
significantly small value obtained for the lightest mass.
However, examination of the projected two-point func-
tion appears consistent with single particle state. We
shall note that the plateau for this particular extraction
of Gu

M1 differed in nature to those at heavier masses.
Based upon the χ2

dof , one is able to fit much earlier,

single operator

variational method

7

Using this expression we are able to evaluate GM1(0)
for experimental measurements of the decay width. We
include the PDG average [1] as well as the three experi-
mental measurements [37–39] used in its evaluation. For
the quark model, the choice of normalisation used in Ref.
[36] results in the following expression for the decay width

Γρ→πγ =
2

3
α|q⃗|3

(

Eπ

mρ

)

∑

q

|⟨ ρ |
µqeqσq

e
|π ⟩|2 .

As discussed in Ref. [36], by using SU(6) quark and anti-
quark flavour combinations, the sum evaluates to

∑

|⟨ ρ |
µqeqσq

e
|π ⟩|2 =

2

9

µ2
ud

e2
.

Matching with Eq. (10), this gives rise to the following
expression

GM1(0) =
2

3

√

mρEπ
µud

e
.

For the quark moment, µud, we use a constituent quark
mass that varies linearly in m2

π

mud = a+ bm2
π ,

with a and b fixed such that the constituent quark has
a mass of 330 MeV at the physical point and 510 MeV
at the SU(3) symmetric point, as determined in Ref. [1]
using the magnetic moments µp, µn and µΛ.
Beginning with our results at the heaviest values of

mπ, we find that our lattice data is close to the quark
model expectation. Furthermore the observed trend in
the data suggests consistency with increasing quark mass
where we would expect the quark model expectation to
hold. The trend in the data also appears consistent with
the determination of Ref. [9]. As we move down to the
lighter masses there is a clear downwards trend in the lat-
tice data, as was also observed in our previous quenched
study [7] [40]. In contrast to this the quark model result
which shows little variation with varyingmπ. In the light
quark regime, we do not expect the quark model to nec-
essarily hold for this transition. Unlike heavier systems
such as bottomium and charmonium decays, the quarks
in both the pi and rho meson systems are highly relativis-
tic. Furthermore, the pion itself is a goldstone mode of
QCD stemming from the underlying chiral symmetry of
the theory. Though we can in principle treat the quarks
relativistically [41, 42], the inability to properly describe
the chiral behaviour of the pion is a fundamental shortfall
of all constituent quark models and may certainly lead
to deviations in the chiral limit.
Comparison with the experimental determination

shows a notable deviation, with the lattice data sitting
around 33% lower than the experimental value. In Fig. 5
we also include the values obtained using VMD with the
space-like data only and find that significant differences
persist. However, we note that our calculation is incom-
plete. Unlike the elastic form factors for which discon-
nected contributions are necessarily zero [15, 31], such
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FIG. 5. Results for the full hadronic transition moment,
GM1(0), extracted using both space and time-like Q2 values
(blue circles) and using the space-like values only and invoking
the VMD hypothesis (red squares). We include the available
experimental extractions (orange) ordered from left to right
by year of publication [37–39]. We also include the PDG aver-
age (red) obtained from this data [1]. The experimental data
are offset for readability, with the PDG average aligned at
the physical point indicated by the vertical dashed line. The
dashed green line is the non-relativistic quark model expec-
tation of [36] as discussed herein. We also include the result
of Shultz et al. [9] (black) which determines this moment for
a single heavy quark mass.

contributions are present for meson transitions that in-
volve a change in G-parity [9]. This is related to the
invariance of the QCD action under charge-conjugation.
For disconnected contributions involving the electromag-
netic current, under charge-conjugation the “C-even”
two-point function and the “C-odd” disconnected loop
give rise to a relative sign between the {U} and {U∗}
configurations and so cancel exactly [31] in the ensemble
average. For transitions involving a change in G-parity,
the two-point function is now “C-odd” and so combin-
ing with the disconnected loop gives rise to a common
sign between the {U} and {U∗} configurations result-
ing in a non-zero quantity [9, 15]. Furthermore, if one
neglects disconnected s-quark contributions, the charge
weight factors between the connected contributions and
the disconnected contributions are equal

GM1 = qu G
con.
M1 + qd̄ (−Gcon.

M1 ) + qu G
dis.
M1 + qdG

dis.
M1

=

(

2

3
−

1

3

)

Gcon.
M1 +

(

2

3
−

1

3

)

Gdis.
M1

=
1

3
Gcon.

M1 +
1

3
Gdis.

M1 .

Thus the discrepancy between our results and the ex-
perimental value suggest that disconnected contributions
are likely to play an important role in fully describing
this transition. One would also expect such contribu-
tions to become increasing important with decreasing
quark mass. This expectation complements the obser-
vation that our results are consistent with quark model

Discrepancy due to 
disconnected diagrams? 
multiparticle operators? 
finite volume?

N⇤ ! N�
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polarized sea. This demonstrates the feasibility of the
approach and will motivate lattice-QCD studies with
improved systematics in the future.

II. PUTTING PARTON DISTRIBUTIONS
ON A LATTICE

For the quark distributions, the starting point is the
momentum-dependent nonlocal static correlation

~qðx;Λ; PzÞ ¼
Z

dz
4π

e−izk

× h~Pjψ̄ðzÞγze
ig
R

z

0
Azðz0Þdz0ψð0Þj~Pi; ð1Þ

where x ¼ k=Pz, Λ is an ultraviolet (UV) cutoff scale such
as 1=a on a lattice with a as lattice spacing, and ~P is the
momentum of the nucleon moving in the z direction. All
fields and couplings are bare and depend on Λ. When the
nucleon momentum approaches infinity, the quasidistribu-
tion becomes the physical parton distribution when Λ is
fixed. At large but finite Pz, one has an effective field
theory expansion [10]

~qðx;Λ; PzÞ ¼
Z

dy
jyj

Z
!
x
y
;
μ
Pz

;
Λ
Pz

"
qðy; μÞ

þO
!
Λ2
QCD

P2
z

;
M2

N

P2
z

"
þ…:; ð2Þ

where μ is the renormalization scale for the physical
parton distribution qðyÞ, usually in the MS scheme. The
Z function is a perturbation series in αs, depending among
others on the UV properties of the quasidistribution. Z
has been calculated to one-loop order in the transverse-
momentum cutoff scheme, but is not yet available in a
lattice regularization. As observed in Ref. [11], the above
relation can be inverted, since it is perturbative.
In this study, we use clover valence fermions on an

ensemble of 243 × 64 gauge configurations with
a ≈ 0.12 fm, box size L ≈ 3 fm, and pion mass Mπ ≈
310 MeV with Nf ¼ 2þ 1þ 1 flavors of highly improved
staggered quarks generated by the MILC Collaboration
[12] and apply hypercubic (HYP) smearing [13] to the
gauge links. HYP smearing has been shown to significantly
improve the discretization effects on operators and shift
their corresponding renormalizations toward their tree-
level values (near unity for quark bilinear operators)
[14]. We calculate the quasidistributions with long straight
gauge-link products between the quark and antiquark in the
inserted current,

~qlatðx;Λ; PzÞ ¼
R

dz
4π e

−izkhðz;Λ; PzÞ;

hðz;Λ; PzÞ ¼ h~Pjψ̄ðzÞγz
!Q

n
UzðnẑÞ

"
ψð0Þj~Pi;

ð3Þ

where Uμ is a discrete gauge link in the μ direction.

We generate the results using 1383 measurements
(among 461 lattice configurations). We extract the matrix
elements hðz;Λ; PzÞ for various z for our lattice setup with
Pz (in units of 2π=L)1, 2, 3. The statistical error becomes
noticeably bigger as the nucleon momentum becomes
larger, as typically seen in lattice hadron calculations.
The correlation vanishes beyond about 1 fm, as is typical
in nonperturbative QCD. This is in strong contrast to the
correlation in the light-cone coordinates, as seen from the
Fourier transformation of the parton distribution in
Feynman variable x, where the correlation length increases
with the nucleon momentum. In the present formalism,
the small x partons arise from the spatial correlation of
order 1 fm, whereas the valence parton correlation is
Lorentz contracted along the z direction, as discussed
in Ref. [9].
We Fourier transform the z coordinate into momentum k

to obtain the quasidistribution ~qlatðx; μ; PzÞ, which is shown
in Fig. 1. It is quite striking that the peak at the lowest
momentum is around x ¼ 1, where the physical parton
distribution vanishes. However, as the nucleon momentum
doubles, the peak shifts to x ≈ 0.5 and the value of the
quasidistribution at x ¼ 1 reduces to half that of the peak.
At the highest momentum, the peak is further shifted to
x ≈ 0.4 and the value at x ¼ 1 is now about a third that of
the peak. This is consistent with the expectation that as
momentum becomes asymptotically large, the quasidistri-
bution becomes more similar to the physical parton dis-
tribution. However, there is a limitation to the size of the
momentum available on the lattice for nucleons. Therefore,
LaMET must be used to extract the asymptotic distribution
from the finite-Pz quasidistributions. If we account for all
the corrections, any quasidistribution at a reasonably large
Pz should yield the same physical prediction.
To take into account the one-loop corrections, we use the

Zðξ ¼ x
y ;

μ
Pz
; ΛPz

Þ factor from Ref. [10]. To make the com-
putation easier, we use the inverted Eq. (2) between the

FIG. 1 (color online). The isovector quark quasidistribution
~uðxÞ − ~dðxÞ as defined in Eq. (1) computed on a lattice with the
nucleon momentum Pz ðin units of 2π=LÞ ¼ 1 (red), 2 (green),
3 (cyan). The Pz ¼ 1ð3Þ curve has the lowest(highest) value
among the curves at x ¼ 0.4.
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Figure 6: Results from an hypothetical mixed momentum analysis using different values of
the momentum in the computation of the lattice matrix element (left: P3 = 4π/L,
right: P3 = 6π/L) than in the Fourier transformation, matching and mass correc-
tions (P3 = 8π/L) with 5 steps of HYP smearing.

Nevertheless, the agreement with the phenomenological parametrizations of the distri-
butions at the intermediate and large x regions is really encouraging. This indicates
that by employing an only moderately larger value of P3 than the ones used here, we
could obtain even a quantitative agreement to the parametrizations in certain regions
of x. This concerns in particular the large x region, where increasing values of P3 tend
to bring the resulting distribution down. In the small (and positive) x region, on the
other hand, it seems that increasing the nucleon momentum is not sufficient to produce
a rise of the distribution. This may be related to the fact that there is a limitation in
the present calculation in the small x region due to the presence of the infrared, 1/L,
and ultra-violet, 1/a cut-off regulators on a finite lattice. Thus, this limitation will be
overcome when larger lattices and smaller values of the lattice spacing become avail-
able. Furthermore, we stress that the here obtained results are at only one, non-physical
value of the pion mass and the shape of distribution might as well depend on the quark
mass. In any case, a more definite statement can only be made after we have access
to the matrix elements for P3 = 8π/L. This is not possible with our present statistics.
However, we are in the process of generating a substantially higher statistics. This will
allow us to extrapolate the data for P3 = 2π/L, P3 = 4π/L and P3 = 6π/L to obtain
the quasidistribution at P3 = 8π/L. Although we do not expect a big difference to the
situation of the hypothetical mixed setup shown in Fig. 6, a full analysis with real data
is, of course, mandatory and will be presented in a forthcoming work.

5 Conclusions and outlook

In this work, we have presented our first exploratory study of the approach developed
in Ref. [5] for the calculation of the x dependence of quark distributions directly on the

13

quasi- and physical distributions, expanded to linear order
in αs [11]. We take the UV cutoff Λ to be the largest lattice
momentum π=a, and MS μ ¼ 2 GeV, which sets the scale
of the parton distribution. The choice of the strong coupling
is somewhat subtle.1 Again, the Z factor from the cutoff
scheme is correct to the leading logarithm but not for the
numerical constant. This is a compromise that we make at
the moment and will be rectified in the future.
At low nucleon momenta, the nucleon-mass corrections

are as important as the one-loop correction, if not more.
Using the operator product expansion, the nonlocal oper-
ator in Eq. (1) can be expanded as

P∞
n¼1 CnðzÞOnð0Þ,

where the tree-level Wilson coefficient CnðzÞ ¼ ðizÞn−1=
ðn − 1Þ!þOðαsÞ and Onð0Þ ¼ ψ̄ð0ÞγzðiDzÞn−1ψð0Þ. The
tensor On is symmetric but not traceless, so it is a mixture
of a twist-2 and higher-twist operators with the matrix
element

h~PjOnð0Þj~Pi ¼ 2anPn
zKn þOðΛ2

QCD=P
2
zÞ ð4Þ

entirely expressible in terms of an ¼
R
dxxn−1qðxÞ, the

nth moment of the desired parton distribution, and Kn ¼
1þ

Pimax
i¼1 C

n−i
i ðM2

N=4P
2
zÞi where C is the binomial func-

tion, and imax ¼
n−ðnmod2Þ

2 . The OðΛ2
QCD=P

2
zÞ term is the

dynamical higher-twist correction. As one can see, the
actual nucleon-mass correction parameter is M2

N=4P
2
z .

After one-loop and nucleon-mass corrections, the result-
ing distributions are shown in Fig. 2. For the nuclear
momenta under consideration, both types of corrections are
important. As one can see, the corrected distributions have
much reduced Pz dependence, particularly for the two
largest momenta. This suggests that the corrections to the
quasidistributions will generate a Pz-independent physical
distribution. The remaining small difference between the
two large-momenta results could be due to the dynamical
higher-twist correctionsOðΛ2

QCD=P
2
zÞ, which is expected to

be smaller than the nucleon-mass effect. As for the lowest
nucleon momentum (430 MeV) result, the LaMET expan-
sion might not be very effective, although the peak after
corrections has been shifted to near 0.8.
Finally, we find a Pz-independent distribution by taking

into account the OðΛ2
QCD=P

2
zÞ correction by extrapolating

using the form aþ b=P2
z . The final unpolarized distribution

uðxÞ − dðxÞ is shown in Fig. 3. The distribution for the
jxj > 1 region is within 2σ of zero; thus, we recover the
correct support for the physical distribution within error.
Our result cannot be directly compared with the exper-

imental data because other lattice systematics are not yet

under control. To obtain the physical parton distributions,
we need to make a number of improvements, including
reducing the quark masses to physical ones, increasing the
number of configurations to reduce statistical errors, using
finer lattice spacing to accommodate larger boosted
momenta and improve the resolution, and using larger
lattice volumes to access smaller x. Nonetheless, we hope
that the present results do provide some insight into the
qualitative features of the parton physics.
Also shown in Fig. 3 are the parton distributions from the

global analyses by CTEQ-JLab (CJ12) [17] and NLO
MSTW08 [16] at μ ≈ 1.3 GeV. Note that the lattice results
are not yet close to the physical pion mass, and the
comparison with the global analysis here is mainly to

FIG. 2 (color online). The physical quark distribution
uðxÞ − dðxÞ extracted fromFig. 1 after makingMn

N=P
n
z corrections

and one-loop corrections. The red, green, and cyan bands corre-
spond to Pz (in units of 2π=L) ¼ 1 (red), 2 (green), 3 (cyan). The
Pz ¼ 1ð3Þ curve has the highest(lowest) value among the curves at
x ¼ 0.6. The two higher-momentum distributions are now
almost identical.

FIG. 3 (color online). The unpolarized isovector quark distri-
bution uðxÞ − dðxÞ computed on the lattice after extrapolation in
Pz is shown as the purple band, compared with the global
analyses by MSTW [16] (brown dotted line), and CTEQ-JLab
(CJ12, green dashed line) [17] with medium nuclear correction
near ð1.3 GeVÞ2. The negative x region is the sea-quark dis-
tribution with q̄ðxÞ ¼ −qð−xÞ. The lattice uncertainty band in the
plot reflects the 68% C.L. The global fit uncertainty is not shown
in the figure.

1In principle, one should use 6=ð4πβÞ on the lattice; however,
it is well known that this omits important tadpole contributions
[15]. As a compromise, we take αs ¼ 0.20% 0.04, with the
central value determined by the prescription of Ref. [15] and the
uncertainty included as a part of the theoretical systematics.
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basic size and “shape” of the nucleon in QCD and convert the one-dimensional picture conveyed 
by the longitudinal momentum densities into a full three-dimensional image of the fast-moving 
nucleon [19,20,21]. Information on the transverse distribution of quarks and gluons is obtained 
from exclusive scattering e N →e' + M + N, (M = meson, γ, heavy quarkonium). Such processes 
probe the generalized parton distributions (GPDs), which combine the concept of the 
quark/gluon momentum density with that of elastic nucleon form factors. Measurements of J/ψ 
photo- and/or electroproduction with a medium-energy EIC would be able to map the transverse 
spatial distribution of gluons in the nucleon above x ~ few × 10-3 in unprecedented detail [2]. In 
particular, these measurements would cover the unexplored gluons in the valence region at x 
≥0.1, whose presence is inferred from global fits to deep-inelastic scattering data but has proved 
difficult to confirm directly; their dynamical origins are one of the outstanding questions of 
nucleon structure in QCD. Information on the transverse spatial distribution of gluons is needed 
also to describe the final states in pp collisions at LHC (underlying event in hard processes, 
multiparton processes) and understand the approach to the regime of high gluon densities at 
small x (initial conditions for non-linear QCD evolution equations) [22]. Measurements of real 
photon production (γ, deeply virtual Compton scattering) with an EIC would differentiate gluon 
and quark spatial distributions and study how the latter are deformed in a transversely polarized 
nucleon. Production of light mesons with charge/isospin (π, K, ρ, K*) would map the transverse 
distributions of sea quarks and provide additional insight into their dynamical origins. This 
program of “quark/gluon imaging” requires differential measurements of low-rate processes and 
relies crucially on the high luminosity provided by the EIC in the envisaged energy range, and 
the possibility to longitudinally and transversely polarize the proton beam. 

 
 

 

 

 

Closely related is the question of the orbital motion of quarks and gluons and its role in 
nucleon structure (see Figure 2.3). This information is encoded in the transverse momentum 
distributions (TMDs) and their response to nucleon and quark/gluon polarization [23,24]. They 
provide a three-dimensional representation of the nucleon in momentum space, complementing 

Figure 2.3: Three-dimensional structure of the fast-moving nucleon in QCD. The distribution of partons 
(quarks, gluons) is characterized by the longitudinal momentum fraction x and the transverse spatial 
coordinate bT (GPDs). In addition, the partons are distributed over transverse momenta kT, reflecting their 
orbital motion and interactions in the system (TMDs). Polarization distorts both the spatial and momentum 
distributions. Note that bT and kT are not Fourier conjugate; a joint description in both variables can be 
formulated in terms of a Wigner phase space density. Observables sensitive to either bT or kT help to 
establish a three-dimensional dynamical picture of the nucleon in QCD. 
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hP | q̄(0)�U [0, ⌘v, ⌘v + b, b] q(b) |P i

2

explorations suggest that it is a viable working assumption to treat nonlocal lattice operators in analogy to the fashion
in which they are treated in continuum QCD [14], namely, by absorbing divergences into multiplicative soft factors.
These soft factors can then be canceled in appropriate ratios; this scheme was used to construct TMD observables in
the subsequent investigation [13], and will be used in the present work. Formally related studies of nonlocal lattice
operators, in which a gauge link in the (Euclidean) time direction originates from the propagation of a heavy auxiliary
quark, have been carried out in [15]; also, a direct approach to light-cone distribution amplitudes based on nonlocal
lattice operators was laid out in [16]. Moreover, the comprehensive framework for investigating parton physics within
lattice QCD put forward in [17] and developed and explored in [18–20] relies on a direct treatment of such nonlocal
lattice operators.

The present work focuses on a TMD observable related to the Boer-Mulders e↵ect in a pion. Lattice QCD studies
of pion structure, predominantly focusing on form factors, have been previously reported in [21–29]. Choosing the
pion as the hadron state is motivated by the principal goal of the investigation presented here, namely, understanding
the behavior of TMDs as a function of an evolution parameter quantifying the rapidity di↵erence between the hadron
momentum and a vector describing the trajectory of the struck quark. Details are furnished further below. In the
previous nucleon study [13], no definite conclusions regarding the limit of large rapidity di↵erence proved possible. By
virtue of its lower mass, the pion provides a larger rapidity di↵erence at given momentum, and this choice of hadron
state thus aids in approaching the limit of physical interest. In addition, the spinless nature of the pion permits
additional spatial averaging to suppress statistical uncertainties. Indeed, the chief advance of the present work lies
in providing quantitative insight into the limit of large evolution parameter. Preliminary accounts of this work were
given in [30–32].

II. DEFINITION OF TMD OBSERVABLES

A. Correlation functions

Quark transverse momentum-dependent parton distributions (TMDs) can be defined in terms of the fundamental
correlator

e�[�]
unsubtr.(b, P, . . .) ⌘

1

2
hP | q̄(0) � U [0, ⌘v, ⌘v + b, b] q(b) |P i , (1)

where P denotes the momentum of the hadron state; the present work focuses on pions, and thus no spin is attached to
the state. � represents an arbitrary Dirac � matrix structure. The quark operators at positions 0 and b are connected
by the gauge link U [0, ⌘v, ⌘v + b, b], which connects the points listed in its argument by straight-line segments; thus,
the gauge link has the shape of a staple, cf. Fig. 1, with the unit vector v specifying the staple direction and ⌘ its
length. One is ultimately interested in the limit ⌘ ! 1, which in a concrete lattice calculation is of course reached
by extrapolation. This gauge link form incorporates final state interactions between the struck quark and the hadron
remnant in semi-inclusive deep inelastic scattering (SIDIS) [33], and analogously initial state interactions in the Drell-

Yan process (DY). The ellipsis in the argument of e�[�]
unsubtr. indicates that the correlator will depend on various further

parameters, related, e.g., to regularization, specified below as needed.
Fourier transformation of (1),

�[�](x, kT , P, . . .) =

Z
d2bT
(2⇡)2

Z
d(b · P )

(2⇡)P+
exp (ix(b · P )� ibT · kT )

e�[�]
unsubtr.(b, P, . . .)

eS(b2T , . . .)

�����
b+=0

(2)
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v
´v

?

´v+b

´!1

FIG. 1: Gauge link structure U [0, ⌘v, ⌘v + b, b] in the correlator (1). In a concrete lattice calculation, the limit ⌘ ! 1 has to
be taken numerically.

Gauge link “along the light cone”
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Excellent progress in understanding and controlling systematic errors 

Precise results at the physical point now achievable for 

isovector charges 

electromagnetic form factors 

With additional progress in computing disconnected contributions 

Improved understanding of long term questions, e.g. 
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role of hidden flavour  

Right time to tackle more “exotic” quantities relevant for upcoming experiments 
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