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Motivation

We study convergent series for lattice φ4-model

I To check the method of the convergent series on the simple
example, allowing one a direct comparison with the Monte
Carlo simulations. The method was developed for continuum
scalar field theories [A. Ushveridze, Phys. Let. B, 1984]
and recently reformulated for QCD [V. Sazonov,
arXiv:1503.00739].

I To design new methods for lattice computations, which may
help to avoid the Sign problem.

I To compare results with the Borel resummation



Lattice φ4-model

Continuous theory in the Euclidean space-time
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Theory on the lattice

S =
V∑

n=0

[
−1

2

∑
µ

(
φnφn+µ + φnφn−µ − 2φ2n

)
+

1

2
M2φ2n +

λ

4!
φ4n

]
In the following we write the quadratic part of the action as

V∑
n=0

[
−1

2

∑
µ

(
φnφn+µ + φnφn−µ − 2φ2n

)
+

1

2
M2φ2n

]
≡ ‖φ‖2.



Calculations

We calculate the observable

〈φ2n〉 ,

using the

I Monte Carlo method [M. Creutz, B. Freedman, Annals
Phys. 1981]

I Borel resummation of the standard perturbation theory [Jean
Zinn-Justin arXiv:1001.0675v1 2010]

I Convergent series [A. Ushveridze, Phys.Let.B, 1984]



Another ways to obtain convergent series

I V. Belokurov, V. Kamchatny, E. Shavgulidze, Y.
Solovyov, Mod.Phys.Let. A, 1997

I Y. Meurice, arxiv.org/abs/hep-th/0103134v3, 2002



Ushveridze method. Main ideas

I New non-perturbed part of the action

I Positive determined series for the perturbation

I Interconnection between new and standard perturbation theory



Ushveridze method

Let’s split the action as

S [φn] = N[φn] + P[φn] = N[φn] + (S [φn]− N[φn]) .

Then the partition function can be calculated in the following way

Z =
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Ushveridze method

The partition function after interchanging of integration and
summation is

Z =
∞∑
l=0

V∏
n

∫
[dφn] e−N[φn] (N[φn]− S [φn])l

l!
.

Let us choose the non-perturbed part of the action as

N[φn] = ‖φ‖2 + σ‖φ‖4



How to find σ

The action and its non-perturbed part are
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n=0

λ

4!
φ4n,

N = ‖φ‖2 + σ‖φ‖4

So, for σ we have
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How to solve new initial approximation

The observable 〈φ2n〉 is the sum of terms of the following type
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How to solve new initial approximation

∫ ∞
0

dt exp
(
− t2 − σt4

) V∏
n

∫
[dφn] φ2n δ(t − ‖φ‖)×
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We rescale field φ as tφ, expand brakets (....)l and end up with the
sum of the integrals like

(
t − depending integral

)
·

V∏
n

∫
[dφn] φn1 ...φnk δ(1− ‖φ‖)



1-dimensional results, 5 loops vs Monte Carlo
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Figure: Comparison of the results for the 1d case on the V = 100 lattice



Behavior of results in dependence on order
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Figure: 1d case for λ = 0.1



Behavior of results in dependence on order
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Figure: 1d case for λ = 1



Behavior of results in dependence on order
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Figure: 1d case for λ = 10



2-dimensional results, 5 loops vs Monte Carlo
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Figure: Comparison of the results for the 2d case on the V = 10× 10
lattice



Behavior of results in dependence on order
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Figure: 2d case for λ = 0.1



Behavior of results in dependence on order
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Figure: 2d case for λ = 1



Behavior of results in dependence on order
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Figure: 2d case for λ = 10



Conclusions

I We have checked the convergent series method in the
application to the lattice φ4-model.

I The results of 5-loop calculations of 〈φ2n〉 are in the good
agreement with Monte Carlo data in the wide range of the
coupling constants.

I This supports the further utilization of this method for
continuum QFT (including Yang-Mills, QCD...)

I and opens new ways for the computations on the lattice,
which probably can help to avoid Sign problem.
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