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Introduction

@ Sign problem in QCD at nonzero chemical potential: particularly serious
in d=4, but already present in lower dimensions.

@ Use QCD in 0+1 and 1+1 dimensions to study viability of the complex
Langevin method

@ Sign problem mild in 0+1d, but large in some regimes of 1+1d QCD
@ Preliminary results for 1+1d QCD: strong coupling, 4 x 4 lattice
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QCD in 0+1 dimensions

Dirac operator & determinant
@ Consider 0+1d QCD: one spatial point and N, = 1/aT time slices.
@ 0+1d QCD Dirac operator for quark of mass m at chemical potential u:
— 1 au —augrr—1
Dtt’ —m5tt/+£|:€ Ut6t’,t+1_e Ut_15t’,t—1:|’

where U, € SL(3,C) and 6,/ is anti-periodic Kronecker delta.
@ Dirac determinant can be reduced to determinant of a 3 x 3 matrix:

1
det(aD) = 2N, det [e“/TP +e #Tp~1 4 2cosh (ue/T) 113]

with Polyakov line P = ]_[t U, and effective mass au,. = arsinh(am).
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QCD in 0+1 dimensions

Partition function

@ 0+1d QCD: no gauge action — partition function is one-link integral of
Dirac determinant (set Ny = 1):

Z = f 9P detD(P),

with SU(3) Haar measure 2P.

@ For u # 0: Redet D has fluctuating sign — sign problem in MC
simulations.

@ Analytic results available for 0+1d QCD (Bilic & Demeterfi, 1988), (Ravagli &
Verbaarschot, 2007)

@ Other works on 0+1d QCD with complex Langevin:

e one-link formulation with mock-gauge action: Aarts & Stamatescu, 2008
e U(N,) in spectral representation: Aarts & Splittorff, 2010

@ Numerical solution to 0+1d QCD using subsets (JB, Bruckmann, Wettig, 2013)
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Eigenvalue representation

@ 0+1d QCD partition function

Z:Jd¢1d¢2J(¢1:¢2)dEtD(P),

with

where ¢, ¢, € C and Haar measure

21— b . 201t Py . 5 P+ 20,
5 sin sin

J(¢1, ¢’2):Sin 9 2
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Eigenvalue representation
Complex Langevin equations

@ Complex action:
S(P)=—logJ —logdetD

@ Complex Langevin equation — complex evolution in SL(3,C)

do;
dt

=K;(P)+m;
with drift term

K;(P)=—

as() _1.4J 18D
36 Ta4, ”[D aqsi]'

and real Gaussian noise 1) with variance 2.
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Eigenvalue representation
Discretizations

@ Stochastic Euler algorithm (order 1):
¢i(t +1) = ¢;(t) + e K;(P) + Ven;.

@ Stochastic Runge-Kutta method of order 3/2 (Chang, 1987), (Aarts &
James, 2012):

€
$i(t+1) = ¢:(0) + S[K(P)+2K(P")] + Ven,
with two intermediate steps P’ and P” computed from:

8] = i+ 5eKi(P)

3 (1 V3
o=+ 5\/5(57)1' + ?ﬂ:)

and 7; and ng are independent real Gaussian noises with variance 2.
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Eigenvalue representation
Results (m=0.5)

Quark number Chiral condensate
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So far so good
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Gell-Mann representation

Complex Langevin evolution
@ Polyakov line:

P=exp|i ) 2,4, (Ag: Gell-Mann matrices)
a

a

@ Increased number of degrees of freedom
@ Discrete time evolution of P in SL(3,C)

P(t+1)=R(t)P(t)

with R € SL(3,C)

@ Dirift term:

Ka(P) = _DaS(P) = _aas(eiaxap)lazo
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Gell-Mann representation

Discretizations

@ Euler discretization:
R=exp [iZAa(eKa + ﬁna)] ,
a
@ Runge-Kutta discretization (Chang, 1987; Batrouni et al., 1985; Bali et al., 2013):
R=exp [i Z Aa(e[kKa(P’) +(1— k)Ka(P”)] + ﬁna)} ,
a
with intermediate steps

P'=RP , P"=R'P
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Gauge cooling in 0+1 d QCD

@ SL(3,C) Gauge transformation of Polyakov line:
P’ =GPG™!
@ Gauge cooling: choose G € SL(3, C) to minimize the unitarity norm
N(P)=tu[PP"+(PPT)1 —2].

@ In 0+1d QCD: maximal cooling = diagonalize Polyakov line.
@ Observables invariant under gauge tf

@ noise distribution not invariant under gauge tf
— gauge cooling and Langevin step do not commute
— different trajectories
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Gauge cooling
Unitarity norm (u =1.0,m = 0.1)
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0+1d QCD with Gell-Mann: Results
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0+1d QCD: Effect of gauge cooling on determinant

&) o'
3 = 3
E E.
Re(det D) Re(det D)
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0+1d QCD: Effect of gauge cooling on observable
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1+1d QCD

Staggered Dirac operator for 1+1d QCD:
1 _ .
D,y =mbé+ 5 [e'uUt(r)5s,r+f —e MU:(r - t)5s,r—f:|
1 -i- A
+ Enr [Ux(r)és,rﬂ% - Ux(r - X)gs,r—fc] >

with staggered fermion phase 7, = (—)" at site r = (x, t).
@ Simulations in strong coupling limit, i.e. e™5¢ =1
@ Preliminary results: 4 x 4 lattice
@ Validation by comparison with subset method
°

In preparation: validation for
N, x N, =4x{2,6,8,10}, 6 x {2,4,6,8}, 8 x {2,4,6,8}
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1+1d QCD: Gauge cooling

@ Gauge trafos
U/(r)=G(r)U,(r)G(r+ %', GeSLE.C)

@ gauge cooling — minimization of unitarity norm

11 =) e [U,(n)U,(r) + (Ur)U,(r) = 2]

r,y

via steepest descent
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1+1d QCD: Results
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Convergence with step size (m=0.1)

@ Convergence to continuum limit e — 0
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1+1d QCD: Effect of gauge cooling on det D (m=0.1)

a
u=0.07 % =
Re(det D) Re(det D)
a
u=0.25 % =
Re(det D) Re(det D)
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Distribution of observables — skirts
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Summary

Complex Langevin in 0+1d QCD at nonzero u
@ Correct in diagonal representation
@ Small discrepancies in Gell-Mann representation

@ Improvement using gauge cooling

Complex Langevin in 1+1d QCD at nonzero u

@ Incorrect results without gauge cooling

@ Gauge cooling: correct results for some m, u ranges

@ For light quarks: cooling does NOT help "enough" in some u-region

@ No clear correlation with branch cut crossings.
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Conclusion and Outlook

Conclusions

@ No systematic runaways

@ Gauge cooling necessary but not sufficient to get correct results
@ Signal for wrong convergence:

@ skirts in distributions of observables
o distribution of determinant is not squeezed but remains broad

Outlook

@ Compact vs non-compact group: try multirate integration to handle real
and imaginary directions differently

@ Replace gauge cooling by alternative gauge fixing
@ Validate method for larger lattices

@ Include gauge action: improved convergence?
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