

◆□▶ ◆舂▶ ★吾≯ ★吾≯ 美国 のへで

Topology and glueballs observables in SU(7)Yang-Mills with open boundary conditions

Alessandro Amato with G. Bali and B. Lucini.

Lattice 2015 - Kobe

In	tr	0	d	11	C	t.	1	0	n	

Lattice Setup

Results 000000000000000 Conclusions

Outline

- 2 Lattice Setup• Simulation Details
- 3 Results
 - Observables
 - Instantons
 - Glueballs Correlators

4 Conclusions

Introduction	Lattice Setup o	Results 0000000000000	Conclusions
Introduction			

- Boundary conditions are required in lattice simulation, but should not affect the final result.
- Every choice of BC carries a number of effects that must be addressed appropriately.
- Often such effects can be positively used to mitigate technical issues, e.g. Schrodinger Functional.
- Periodic Boundary Conditions (PBC) are widely used in LQCD: translational invariance.

• <u>Problem</u>: frozen topology in the continuum limit.

- First studies showed a reduction of τ_{int} for the slowly varying modes of the theory. [Lüscher, Schaefer '11,'13]
- Influence of OBC on χ_{TOP} , scalar/pseudoscalar glueball masses for SU(3) [Chowdhury et al. '14,'15]
- Meson/baryon spectroscopy with $N_f = 2 + 1$ improved Wilson fermions and OBC [Bruno et al '15]

ション ふゆ アメリア メリア ション

- Motivation: Large-N 't-Hooft limit of QCD approached from lattice simulation;
- As N is increased, slow down of numerical simulation is proven to be even worse;
- We focus on SU(7) Yang-Mills theory with Open/Periodic BC and study:

ション ふゆ アメリア メリア ション

- Instanton distribution;
- Autocorrelation of Topological charge;
- Glueball correlators for 0^{++} and 0^{-+} states.

Introd		

Lattice Setup

Results 00000000000000 Conclusions

Simulations Details

Wilson Action

$$S = \beta \sum_{i,\mu < \nu} \left(1 - \operatorname{Re} \operatorname{Tr} U_{\mu\nu}(i) \right) \qquad \beta \equiv 2N/g^2$$

• 1 HB + 4 OR
$$(N_{\rm skip} = 200)$$

•
$$\beta = 34.8343$$

•
$$a \simeq 0.94$$
 fm
with $a\sqrt{\sigma} = 0.2093(1)$
[Bali et al., '13]

• Code: QDP-JIT/PTX (on Tesla M2090) [Winter et al., '14]

Volume	BC	$N_{\rm CFG}$
163	PBC	383
10×32	OBC	787
$16^{3} \times 48$	PBC	438
10 × 40	OBC	592
16 ³ × 64	PBC	2973
10 × 04	OBC	2981

In	tr	0	d١	101	0	n

Lattice Setup

Results

Conclusions

Observables

Topological Charge

$$Q = \frac{1}{32\pi^2} \sum_{i,\mu<\nu} \epsilon_{\mu\nu\rho\sigma} U_{\mu\nu}(i) U_{\rho\sigma}(i) = \sum_{t=0}^{N_t-1} q(t)$$

Smoothing provided by:

- Cooling [Teper, '85]
- Gradient Flow [Lüscher, '10]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ���?

Lattice Setup

 Conclusions

Topological Charge: History

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Observables

Topological Charge

$$Q = \frac{1}{32\pi^2} \sum_{i,\mu < \nu} \epsilon_{\mu\nu\rho\sigma} U_{\mu\nu}(i) U_{\rho\sigma}(i) = \sum_{t=0}^{N_t - 1} q(t)$$

• Autocorrelation [Wolff, '04]:

Lattice Setur

Conclusions

Topological Charge: Autocorrelation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ���?

Lattice Setur

Conclusions

Topological Charge: Autocorrelation

Lattice Setu

Conclusions

Topological Charge: Autocorrelation

Lattice Setur

Conclusions

Topological Charge: Autocorrelation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ���?

• In terms of the instantons, the topological charge:

$$Q = N^+ - N^-$$

• Small Instantons suppressed at large N

$$D(\rho) \propto \rho^{\frac{11}{3}N-5}$$

• Instantons size is determined from local peaks of the topological charge [Smith, Teper, '98]

$$\frac{\rho}{a} = \left(\frac{6}{\pi^2 Q_{\text{peak}}}\right)^{1/4}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

l m	tr	0	d	<u>et</u>	0	n
				0		

Lattice Setup

Results

Conclusions

Instanton Size Distribution

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Lattice Setup

Results

Conclusions

Lander Lerder Le 990

Instantons Position in time

$$N_I = (n_{I^+} + n_{I^-})$$

ション ふゆ アメリア メリア ション

Glueballs Correlators

- Motivation: slow dynamic of Q might affect some spectral quantities
- Channels studied:
 - $\bullet~0^{++}\colon$ plaquette-plaquette correlation function.
 - 0^{-+} : correlation of topological charge per timeslice.
- Smoothing
 - Gradient flow

Lattice Setup

Results

Conclusions

0^{++} – Periodic BC

Results

 0^{++} – Open BC

◆□▶ <個▶ < 目▶ < 目▶ 三目■ のへで</p>

Lattice Setup

Results

Conclusions

0^{++} – Effective mass

もって 正則 エル・エー・エー・

Lattice Setur

Results

Conclusions

0^{++} – Effective mass

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Lattice Setup

Results

Conclusions

0^{-+} – Periodic BC

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□

Results

 0^{-+} – Open BC

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□

Lattice Setup

 Conclusions

0^{-+} – Ratio of Correlators

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のへで

	Lattice Setup o	Results 0000000000000	Conclusions
Conclusions			

- OBC effectively reduces correlation of Q even in the SU(7) case where creation of small instantons is highly suppressed
- OBC agrees very well with PBC in the bulk
- A great number of small dislocations are concentrated on the boundaries for OBC which then grow to physical size in the bulk
- Wilson flow competitive for extraction of glueball 0^{++} mass

Thanks!

t_0 scale

< □ > < 個 > < 注 > < 注 > 注目 > の < ⊙

t_0 scale

< □ > < 個 > < 注 > < 注 > 注目 > の < ⊙

Q as a function of t_w

