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Reduction in large N gauge theories

I Equations for Wilson loops in U(N) are volume independent for
N →∞ [Eguchi, Kawai].

I Proof relies on factorization and [U(1)]d symmetry.
I Soon [Bhanot, Heller, Neuberger] it was realized that [U(1)]d broken at weak

coupling.
I Partial reduction [Narayanan, Neuberger]: if L > Lc then SU(∞) is volume

independent (Lc ∼ 1/Tc).

Is SU(∞) gauge theory independent of the spatial volume?

I EK proof of volume independence valid for all boundary conditions
I Weak coupling behavior of SU(N) depends on choice of b.c.

Twisted reduction [A. Gonzalez-Arroyo, M. Okawa]
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Twisted Boundary conditions and weak coupling

In a periodic world only gauge invariant quantities need to be periodic.

Aµ(x + Lν̂) = Ων(x)Aµ(x)Ω+
ν (x) + ıΩν(x)∂µΩ+

ν (x).

I Periodic boundary conditions: Path integral dominated by torons

〈AµAν〉 ∼
∫
DA AµAνe−(pµAµ)2−Ã4

µ(0)

I But twisted boundary conditions can be chosen so that zero mode vanish. ej:
Symmetric twist (

√
N ∈ Z, and zµν = eık/

√
N with k and

√
N) coprime.

ΩµΩν = zµνΩνΩµ

I Using a particular Lie algebra basis [M. Garcia Perez et. al.]

Aµ(x) =
1
L4

∑
p

eıpxÃµ(p)Γ(p)

Key idea

4/22



Introduction d = 2 Reduction Plaquette Flow Quantities Conclusions

Twisted Boundary conditions and weak coupling

(In the continuum) The gauge field can be expanded as

Aµ(x) =
1
L4

∑
p

eıpxÃµ(p)Γ(p) ,

I Ãµ(p) is a number.
I Γ(p) is a matrix.
I p = 2πn√

NL
→Momenta quantized as if the volume were Leff =

√
NL.

I Feynmann rules in momentum space depend on

sin
(
θµν

2
pµqν

)
, (1)

with θµν = L2N
2π k̄/

√
N and kk̄ = 1 mod

√
N.

The N2 glouns “build” an
√

N4 space

I Keeping k = 1 does not work [Teper, Vairinhos; Ishikawa, Okawa].

Choice of twist (k) very important
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TEK model

Z =

∫
DUµ exp

bN
∑
µ6=ν

Tr
[
1− zµνUµUνU†µU†ν

]
Single site model (d=0)
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What about a non-symmetric twist?

I Choose to twist only the plane (1, 2)

nµν = −nνµ =

{
k µ = 1, ν = 2
0 otherwise

I (In the continuum) The gauge field can be expanded as

Aµ(x) =
1
L4

∑
p

eıpxÃµ(p)Γ(p) ,

I Ãµ(p) is a number.
I Γ(p) is a matrix.
I p1,2 = 2πn

NL1,2
; p0,3 = 2πn

L0,3
→Momenta quantized as if Leff

1,2 = NL1,2.

I Feynmann rules in momentum space depend on

sin
(
θµν

2
pµqν

)
,

with θµν = L2N
2π k̄/

√
N and kk̄ = 1 mod

√
N.

Can we play with other choices of twist?
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What about a non-symmetric twist?

I Lattice simulation on a L0 × 1× 1× L3 lattice
I Choose twist on the plane (1, 2): Leff

1,2 = N

I Recover SU(∞) in R4 by taking the limits N, L −→∞.
I Choose k with the same recipes as in symmetric twist [A. Gonzalez-Arroyo, M. Okawa]

k coprime with N k/N > 1/9
kk̄ = 1 mod N large θ = k̄/N

SU(∞) in R4

I Thermodynamics: L4 = β and N, L3 →∞
I Extract masses from correlators:∑

x
〈O(x, x0)O(0)〉 −→ e−mx0

I Numerically efficient
SU(L) on 1× 1× L× L
L3 × 12 × L2 → O(L5)

SU(L2) on 1× 1× 1× 1
(L2)3 × 14 → O(L6)

Why is such a choice interesting?
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Is center symmetry respected?

I In a normal lattice gauge theory gauge symmetry implies

U[Λ]
1 (x) = Λ†(x)U1(x)Λ(x + 1̂) =⇒ 〈TrU1(x)〉 = 0

I Not anymore for reduced directions

U[Λ]
1 (x) = Λ†(x)U1(x)Λ(x) 6=⇒ 〈TrU1(x)〉 = 0

I If reduction works, open paths must have zero expectation value. Note that this
means that [U(1)]d symmetry is not broken.

I Measure order parameters
1
N
〈|U1,2(x)|〉

I Simulations:
N Lattice size k k̄ k̄/N
24 12×24 2 7 7 0.291666..
36 12×362 13 25 0.305555..
40 12×402 11 11 0.275
56 12×562 23 39 0.303571..

Open paths
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Is center symmetry respected?
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Plaquette values b = 0.360
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Plaquette values b = 0.360
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Figure: Comparison with Literature [arXiv:1410.6405] (SU(1369)).
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Plaquette values b = 0.370
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Figure: Comparison with Literature [arXiv:1410.6405] (SU(1369)).
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Plaquette values

Reduction b = 0.355 b = 0.360 b = 0.365 b = 0.370
d = 4∗ 0.545417(63) 0.558012(12) 0.569021(41) 0.578978(17)
d = 2 0.545319(51) 0.557988(35) 0.569018(17) 0.5789434(64)
d = 0∗ 0.545336(11) 0.558019(11) 0.569018(4) 0.578959(5)

* [A. Gonzalez-Arroyo, M. Okawa. arXiv:1410.6405]
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Restoration of O(4) symmetry

Taking L,N →∞we should recover O(4) symmetry

O(4) Symmetry is restored
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Restoration of O(4) symmetry

Taking L,N →∞we should recover O(4) symmetry

O(4) Symmetry is restored

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

 0  0.0002  0.0004  0.0006  0.0008  0.001  0.0012  0.0014  0.0016  0.0018

s
td

. 
d

e
v
ia

ti
o

n
 b

e
tw

e
e

n
 p

la
n

e
s

1/N
2

b=0.355
b=0.360
b=0.365
b=0.370

16/22



Introduction d = 2 Reduction Plaquette Flow Quantities Conclusions

Overview

Introduction

d = 2 Reduction

Plaquette

Flow Quantities

Conclusions

17/22



Introduction d = 2 Reduction Plaquette Flow Quantities Conclusions

Yang-Mills flow quantities

Gνµ(x, t) = ∂νBµ(x, t)− ∂νBµ(x, t) + [Bν(x, t),Bµ(x, t)]
dBµ(x, t)

dt
= DνGνµ(x, t)

(
∼ −

δSYM[B]

δBµ

)
with initial condition Bµ(x, t = 0) = Aµ(x). Energy density has a continuum limit

〈E(t, x)〉 = −
1
2
〈TrGµν(t, x)Gµν(t, x)〉

Yang-Mills gradient flow

With the definition E(t) = 1
N t2〈E(t)〉

t0 : E(t0) = 0.1

w0 : w2
0

d
dt
E(t)

∣∣∣
t=w2

0
= 0.1

we have √
t0 ∼ 0.15fm w0 ∼ 0.18fm

Reference scales
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b = 0.365
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Ratio w2
0/t0
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Conclusions

I Twisted boundary conditions allow to push the idea of reduction to the limit
(TEK model).

I Choice of twist allows a variety of models with different dimensional
reductions (d = 4, 2, 0).

I d = 2 reduced models have some advantages
I Computing masses/correlators
I Phase diagram and finite T of SU(∞)
I Numericallly efficient: paralellization/better scaling

I Reduction works for d = 2 if twist choosen properly: No center symmetry
breaking, O(4) symmetry restoration.

Exploration of d = 2 twisted reduction

I For precise quantities (plaquette, flow),O(1/N2),O(1/L) corrections are not
negligible

I Better understanding on these corrections is desirable and necessary for a
precise determination of continuum quantities.

Drawbacks
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