(Dimensional) twisted reduction in large N gauge theories

Liam Keegan, Alberto Ramos* <alberto.ramos@cern.ch>

July 17, 2015

Introe	DUCTION	d = 2 Reduction	Plaquette	Flow Quantities	Conclusions		
Ov	Overview						
	Introduction						
	d = 2 Reduction	on					
	Plaquette						
	Flow Quantitie	es					
	Conclusions						

INTRODUCTION	d = 2 Reduction	Plaquette	Flow Quantities	Conclusions	
Reduction	on in large N gauge the	HEORIES			
	Is $SU(\infty)$ gauge theory independent of the second	endent of the spatn $U(N)$ are volum	tial volume? le independent for		
•	Proof relies on factorization a	and $[U(1)]^d$ symm	ietry.		
•	► Soon [Bhanot, Heller, Neuberger] it was realized that [U(1)] ^d broken at weak coupling.				
▶	Partial reduction [Narayanan, Ne	uberger]: if $L > L_c$	then $SU(\infty)$ is volume		

independent ($L_c \sim 1/T_c$).

Twisted reduction [A. Gonzalez-Arroyo, M. Okawa]

- ► EK proof of volume independence valid for all boundary conditions
- ► Weak coupling behavior of *SU*(*N*) depends on choice of b.c.

INTRODUCTION AND WEAK COUPLING
TWISTED BOUNDARY CONDITIONS AND WEAK COUPLING
The N² glouns "build" an
$$\sqrt{N}^4$$
 space
(In the continuum) The gauge field can be expanded as

$$A_{\mu}(x) = \frac{1}{L^4} \sum_{p} e^{ipx} \tilde{A}_{\mu}(p) \Gamma(p),$$
• $\tilde{A}_{\mu}(p)$ is a number.
• $\Gamma(p)$ is a number.
• $\Gamma(p)$ is a matrix.
• $p = \frac{2\pi n}{\sqrt{NL}} \rightarrow$ Momenta quantized as if the volume were $L_{eff} = \sqrt{NL}$.
• Feynmann rules in momentum space depend on
 $\sin\left(\frac{\theta_{\mu\nu}}{2}p_{\mu}q_{\nu}\right),$ (1)
with $\theta_{\mu\nu} = \frac{L^2N}{2\pi}\bar{k}/\sqrt{N}$ and $k\bar{k} = 1 \mod \sqrt{N}$.
Choice of twist (k) very important
• Keeping $k = 1$ does not work [Teper, Vairinhos; Ishikawa, Okawa].

Figure: Source: arXiv:1410.6405 [A. Gonzalez-arroyo, M. Okawa]

Introduction	d = 2 Reduction	Plaquette	FLOW QUANTITIES	Conclusions
Overview	N			
Introd	luction			
<i>d</i> = 2	Reduction			
Plaqu	ette			
Flow	Quantities			
Concl	usions			

Introduction	d = 2 Reduction	Plaquette	Flow Quantities	Conclusions
What	ABOUT A NON-SYMMETRIC TW	'IST?		
6	Can we play with other choices of	f twist?		
	► Choose to twist only the plane (1	ι,2)		
	$n_{\mu u} = -n_{ u}$	$\mu = \begin{cases} k \\ 0 \end{cases}$	$\mu = 1, \nu = 2$ otherwise	
	► (In the continuum) The gauge fie	eld can be	expanded as	
	$A_{\mu}(x) =$	$\frac{1}{L^4}\sum_p e^{\imath p}$	$^{x}\tilde{A}_{\mu}(p)\Gamma(p)$,	
	• $\tilde{A}_{\mu}(p)$ is a number.			
	• $\Gamma(p)$ is a matrix.			
	► $p_{1,2} = \frac{2\pi n}{NL_{1,2}}; p_{0,3} = \frac{2\pi n}{L_{0,3}} \to \text{Mom}$	ienta quan	tized as if $L_{1,2}^{\text{eff}} = NL_{1,2}$.	
	► Feynmann rules in momentum s	pace depe	nd on	

$$\sin\left(\frac{\theta_{\mu\nu}}{2}p_{\mu}q_{\nu}\right)\,,$$

with $\theta_{\mu\nu} = \frac{L^2 N}{2\pi} \bar{k} / \sqrt{N}$ and $k\bar{k} = 1 \mod \sqrt{N}$.

INTRODUCTION	d = 2 Reduction	Plaquette	Flow Quantities	Conclusions
WHAT A	ABOUT A NON-SYMMETRIC TW $SU(\infty)$ in \mathbb{R}^4 • Lattice simulation on a $L_0 \times 1 \times$ • Choose twist on the plane (1, 2): • Recover $SU(\infty)$ in \mathbb{R}^4 by taking t • Choose <i>k</i> with the same recipes a k coprime w $k\bar{k} = 1$ m	IST? $1 \times L_3$ lattic $L_{1,2}^{\text{eff}} = N$ the limits $N_{1,2}$ is in symme rith $N = k_1$ and $N = 1$ lattic	te $,L\longrightarrow\infty.$ tric twist [A. Gonzalez-Arroyo, M. Okav $/N>1/9$ ge $ heta=ar{k}/N$	va]
	 Why is such a choice interesting? Thermodynamics: L₄ = β and N 	$, L_3 \rightarrow \infty$		

Extract masses from correlators:

$$\sum_{\mathbf{x}} \langle O(\mathbf{x}, x_0) O(0) \rangle \longrightarrow e^{-mx_0}$$

► Numerically efficient SU(L) on $1 \times 1 \times L \times L$ $L^3 \times 1^2 \times L^2 \rightarrow \mathcal{O}(L^5)$

 $\begin{array}{l} SU(L^2) \text{ on } 1 \times 1 \times 1 \times 1 \\ (L^2)^3 \times 1^4 \to \mathcal{O}(L^6) \end{array}$

INTRODUC	d = 2 Reduction	Plaquette	Flow Quantities	Conclusions
Is ce	NTER SYMMETRY RESPECTED?			
1	Open paths			
	 In a normal lattice gauge theo 	ory gauge symme	try implies	
	$U_1^{[\Lambda]}(x) = \Lambda^{\dagger}(x)$	$(x)U_1(x)\Lambda(x+\hat{1})$	$\Longrightarrow \langle \mathrm{Tr} U_1(x) \rangle = 0$	

Not anymore for reduced directions

$$U_1^{[\Lambda]}(x) = \Lambda^{\dagger}(x)U_1(x)\Lambda(x) \not\Longrightarrow \langle \mathrm{Tr} U_1(x) \rangle = 0$$

- ► If reduction works, open paths must have zero expectation value. Note that this means that $[U(1)]^d$ symmetry is *not* broken.
- Measure order parameters

$$\frac{1}{N}\langle |U_{1,2}(x)|\rangle$$

Simulations:

Ν	Lattice size	k	\overline{k}	\bar{k}/N
24	$1^2 \times 24^2$	7	7	0.291666
36	$1^2 \times 36^2$	13	25	0.305555
40	$1^2 \times 40^2$	11	11	0.275
56	$1^2 \times 56^2$	23	39	0.303571

IS CENTER SYMMETRY RESPECTED?

Figure: $\frac{1}{N} \langle |U_{1,2}(x)| \rangle$ For different *b* and *N*.

Introduction	d = 2 Reduction	Plaquette	FLOW QUANTITIES	Conclusions
Overview				
Introductio	n			
$d = 2 \operatorname{Redu}$	iction			
Plaquette				
Flow Quan	tities			
Conclusior	IS			

Introduction	d = 2 Reduction	Plaquette	FLOW QUANTITIES	Conclusions

Plaquette values b = 0.360

Plaquette values b = 0.360

Figure: Comparison with Literature [arXiv:1410.6405] (SU(1369)).

Plaquette values b = 0.370

Figure: Comparison with Literature [arXiv:1410.6405] (SU(1369)).

Introduction	d = 2 Reduction	Plaquette	FLOW QUANTITIES	Conclusions

Plaquette values

Reduction	b = 0.355	b = 0.360	b = 0.365	b = 0.370
$d = 4^{*}$	0.545417(63)	0.558012(12)	0.569021(41)	0.578978(17)
d = 2	0.545319(51)	0.557988(35)	0.569018(17)	0.5789434(64)
$d = 0^*$	0.545336(11)	0.558019(11)	0.569018(4)	0.578959(5)

* [A. Gonzalez-Arroyo, M. Okawa. arXiv:1410.6405]

Introduction	d = 2 Reduction	Plaquette	FLOW QUANTITIES	Conclusions
Overview				
Introducti	on			
$d = 2 \operatorname{Red}$	uction			
Plaquette				
Flow Quar	ntities			
Conclusion	ns			

8/22

b = 0.365

Introduction	d = 2 Reduction	Plaquette	FLOW QUANTITIES	Conclusions
Overview				
Introduct	tion			
$d = 2 \operatorname{Rec}$	duction			
Plaquette	2			
Flow Qua	antities			
Conclusio	ons			

INTRODUCTION	d = 2 Reductio	n Plaquette	FLOW QUANTITIES	Conclusions		
Conclu	JSIONS					
6	Exploration of $d = 2$	twisted reduction				
	 Twisted boundary c (TEK model). 	onditions allow to pu	sh the idea of reduction to the li	imit		
► Choice of twist allows a variety of models with different dimensional reductions (<i>d</i> = 4, 2, 0).						
	 <i>d</i> = 2 reduced models have some advantages Computing masses/correlators Phase diagram and finite <i>T</i> of <i>SU</i>(∞) Numericallly efficient: paralellization/better scaling 					
	 Reduction works for breaking, O(4) symp 	d = 2 if twist choose netry restoration.	n properly: No center symmetry	ÿ		
	Drawbacks					
	 For precise quantitie negligible 	es (plaquette, flow), C	$\mathcal{O}(1/N^2), \mathcal{O}(1/L)$ corrections are	not		
	 Better understanding on these corrections is desirable and necessary for a precise determination of continuum quantities. 					