(Dimensional) twisted reduction in large N gauge theories

Liam Keegan, Alberto Ramos*
alberto.ramos@cern.ch

July 17, 2015

Overview

Introduction

$d=2$ Reduction

Plaquette

Flow Quantities

Conclusions

Reduction in large N gauge theories

Is $S U(\infty)$ gauge theory independent of the spatial volume?

- Equations for Wilson loops in $U(N)$ are volume independent for $N \rightarrow \infty$ [Eguchi, Kawai].
- Proof relies on factorization and $[U(1)]^{d}$ symmetry.
- Soon [Bhanot, Heller, Neuberger] it was realized that $[U(1)]^{d}$ broken at weak coupling.
- Partial reduction [Narayanan, Neuberger]: if $L>L_{c}$ then $S U(\infty)$ is volume independent ($L_{c} \sim 1 / T_{c}$).

Twisted reduction [A. Gonzalez-Arroyo, M. Okawa]

- EK proof of volume independence valid for all boundary conditions
- Weak coupling behavior of $S U(N)$ depends on choice of b.c.

Twisted Boundary conditions and weak coupling

Key idea
In a periodic world only gauge invariant quantities need to be periodic.

$$
A_{\mu}(x+L \hat{\nu})=\Omega_{\nu}(x) A_{\mu}(x) \Omega_{\nu}^{+}(x)+\imath \Omega_{\nu}(x) \partial_{\mu} \Omega_{\nu}^{+}(x) .
$$

- Periodic boundary conditions: Path integral dominated by torons

$$
\left\langle A_{\mu} A_{\nu}\right\rangle \sim \int \mathcal{D} A A_{\mu} A_{\nu} e^{-\left(p_{\mu} A_{\mu}\right)^{2}-\tilde{A}_{\mu}^{4}(0)}
$$

- But twisted boundary conditions can be chosen so that zero mode vanish. ej: Symmetric twist ($\sqrt{N} \in \mathbb{Z}$, and $z_{\mu \nu}=e^{\imath k / \sqrt{N}}$ with k and \sqrt{N}) coprime.

$$
\Omega_{\mu} \Omega_{\nu}=z_{\mu \nu} \Omega_{\nu} \Omega_{\mu}
$$

- Using a particular Lie algebra basis [M. Garcia Perez et. al.]

$$
A_{\mu}(x)=\frac{1}{L^{4}} \sum_{p} e^{\imath p x} \tilde{A}_{\mu}(p) \Gamma(p)
$$

Twisted Boundary conditions and weak coupling

The N^{2} glouns "build" an \sqrt{N}^{4} space
(In the continuum) The gauge field can be expanded as

$$
A_{\mu}(x)=\frac{1}{L^{4}} \sum_{p} e^{\imath p x} \tilde{A}_{\mu}(p) \Gamma(p),
$$

- $\tilde{A}_{\mu}(p)$ is a number.
- $\Gamma(p)$ is a matrix.
- $p=\frac{2 \pi n}{\sqrt{N} L} \rightarrow$ Momenta quantized as if the volume were $L_{\text {eff }}=\sqrt{N} L$.
- Feynmann rules in momentum space depend on

$$
\begin{equation*}
\sin \left(\frac{\theta_{\mu \nu}}{2} p_{\mu} q_{\nu}\right), \tag{1}
\end{equation*}
$$

with $\theta_{\mu \nu}=\frac{L^{2} N}{2 \pi} \bar{k} / \sqrt{N}$ and $k \bar{k}=1 \bmod \sqrt{N}$.

Choice of twist (k) very important

- Keeping $k=1$ does not work [Teper, Vairinhos; Ishikawa, Okawa].

TEK model

Single site model ($\mathrm{d}=0$)

$$
\mathcal{Z}=\int \mathcal{D} U_{\mu} \exp \left\{b N \sum_{\mu \neq \nu} \operatorname{Tr}\left[1-z_{\mu \nu} U_{\mu} U_{\nu} U_{\mu}^{\dagger} U_{\nu}^{\dagger}\right]\right\}
$$

Figure: Source: arXiv:1410.6405 [A. Gonzalez-arroyo, M. Okawa]

Overview

Introduction

$d=2$ Reduction

Plaquette

Flow Quantities

Conclusions

What about a non-symmetric twist?

Can we play with other choices of twist?

- Choose to twist only the plane $(1,2)$

$$
n_{\mu \nu}=-n_{\nu \mu}= \begin{cases}k & \mu=1, \nu=2 \\ 0 & \text { otherwise }\end{cases}
$$

- (In the continuum) The gauge field can be expanded as

$$
A_{\mu}(x)=\frac{1}{L^{4}} \sum_{p} e^{\imath p x} \tilde{A}_{\mu}(p) \Gamma(p),
$$

- $\tilde{A}_{\mu}(p)$ is a number.
- $\Gamma(p)$ is a matrix.
- $p_{1,2}=\frac{2 \pi n}{N L_{1,2}} ; p_{0,3}=\frac{2 \pi n}{L_{0,3}} \rightarrow$ Momenta quantized as if $L_{1,2}^{\text {eff }}=N L_{1,2}$.
- Feynmann rules in momentum space depend on

$$
\sin \left(\frac{\theta_{\mu \nu}}{2} p_{\mu} q_{\nu}\right)
$$

with $\theta_{\mu \nu}=\frac{L^{2} N}{2 \pi} \bar{k} / \sqrt{N}$ and $k \bar{k}=1 \bmod \sqrt{N}$.

What about a non-symmetric twist?

$$
S U(\infty) \text { in } \mathbb{R}^{4}
$$

- Lattice simulation on a $L_{0} \times 1 \times 1 \times L_{3}$ lattice
- Choose twist on the plane (1,2): $L_{1,2}^{\text {eff }}=N$
- Recover $\operatorname{SU}(\infty)$ in \mathbb{R}^{4} by taking the limits $N, L \longrightarrow \infty$.
- Choose k with the same recipes as in symmetric twist [A. Gonzalez-Arroyo, M. Okawa]

$$
\begin{array}{rc}
k \text { coprime with } N & k / N>1 / 9 \\
k \bar{k}=1 \bmod N & \text { large } \theta=\bar{k} / N
\end{array}
$$

Why is such a choice interesting?

- Thermodynamics: $L_{4}=\beta$ and $N, L_{3} \rightarrow \infty$
- Extract masses from correlators:

$$
\sum_{\mathbf{x}}\left\langle O\left(\mathbf{x}, x_{0}\right) O(0)\right\rangle \longrightarrow e^{-m x_{0}}
$$

- Numerically efficient

$$
S U(L) \text { on } 1 \times 1 \times L \times L
$$

$$
L^{3} \times 1^{2} \times L^{2} \rightarrow \mathcal{O}\left(L^{5}\right)
$$

$$
\begin{aligned}
& \operatorname{SU}\left(L^{2}\right) \text { on } 1 \times 1 \times 1 \times 1 \\
& \left(L^{2}\right)^{3} \times 1^{4} \rightarrow \mathcal{O}\left(L^{6}\right)
\end{aligned}
$$

Is CENTER SYMMETRY RESPECTED?

Open paths

- In a normal lattice gauge theory gauge symmetry implies

$$
U_{1}^{[\Lambda]}(x)=\Lambda^{\dagger}(x) U_{1}(x) \Lambda(x+\hat{1}) \Longrightarrow\left\langle\operatorname{Tr} U_{1}(x)\right\rangle=0
$$

- Not anymore for reduced directions

$$
U_{1}^{[\Lambda]}(x)=\Lambda^{\dagger}(x) U_{1}(x) \Lambda(x) \nRightarrow\left\langle\operatorname{Tr} U_{1}(x)\right\rangle=0
$$

- If reduction works, open paths must have zero expectation value. Note that this means that $[U(1)]^{d}$ symmetry is not broken.
- Measure order parameters

$$
\frac{1}{N}\langle | U_{1,2}(x)| \rangle
$$

- Simulations:

N	Lattice size	k	\bar{k}	\bar{k} / N
24	$1^{2} \times 24^{2}$	7	7	$0.291666 .$.
36	$1^{2} \times 36^{2}$	13	25	$0.305555 .$.
40	$1^{2} \times 40^{2}$	11	11	0.275
56	$1^{2} \times 56^{2}$	23	39	$0.303571 .$.

Is CENTER SYMMETRY RESPECTED?

Figure: $\frac{1}{N}\langle | U_{1,2}(x)| \rangle$ For different b and N.

Overview

Introduction

$d=2$ Reduction

Plaquette

Flow Quantities

Conclusions

PlaQuette values $b=0.360$

PlaQuette values $b=0.360$

Figure: Comparison with Literature [arXiv:1410.6405] (SU(1369)).

PlaQuette values $b=0.370$

Figure: Comparison with Literature [arXiv:1410.6405] (SU(1369)).

PlaQuette values

Reduction	$b=0.355$	$b=0.360$	$b=0.365$	$b=0.370$
$d=4^{*}$	$0.545417(63)$	$0.558012(12)$	$0.569021(41)$	$0.578978(17)$
$d=2$	$0.545319(51)$	$0.557988(35)$	$0.569018(17)$	$0.5789434(64)$
$d=0^{*}$	$0.545336(11)$	$0.558019(11)$	$0.569018(4)$	$0.578959(5)$

* [A. Gonzalez-Arroyo, M. Okawa. arXiv:1410.6405]

Restoration of $O(4)$ symmetry

$O(4)$ Symmetry is restored

Taking $L, N \rightarrow \infty$ we should recover $O(4)$ symmetry

Restoration of $O(4)$ symmetry

$O(4)$ Symmetry is restored
Taking $L, N \rightarrow \infty$ we should recover $O(4)$ symmetry

Overview

Introduction
$d=2$ Reduction
Plaquette

Flow Quantities

Conclusions

Yang-Mills flow Quantities

Yang-Mills gradient flow

$$
\begin{aligned}
G_{\nu \mu}(x, t) & =\partial_{\nu} B_{\mu}(x, t)-\partial_{\nu} B_{\mu}(x, t)+\left[B_{\nu}(x, t), B_{\mu}(x, t)\right] \\
\frac{d B_{\mu}(x, t)}{d t} & =D_{\nu} G_{\nu \mu}(x, t) \quad\left(\sim-\frac{\delta S_{\mathrm{YM}}[B]}{\delta B_{\mu}}\right)
\end{aligned}
$$

with initial condition $B_{\mu}(x, t=0)=A_{\mu}(x)$. Energy density has a continuum limit

$$
\langle E(t, x)\rangle=-\frac{1}{2}\left\langle\operatorname{Tr} G_{\mu \nu}(t, x) G_{\mu \nu}(t, x)\right\rangle
$$

Reference scales

With the definition $\mathcal{E}(t)=\frac{1}{N} t^{2}\langle E(t)\rangle$

$$
\begin{array}{rll}
t_{0} & : & \mathcal{E}\left(t_{0}\right)=0.1 \\
w_{0} & : & \left.w_{0}^{2} \frac{d}{d t} \mathcal{E}(t)\right|_{t=w_{0}^{2}}=0.1
\end{array}
$$

we have

$$
\sqrt{t_{0}} \sim 0.15 \mathrm{fm} \quad w_{0} \sim 0.18 \mathrm{fm}
$$

$b=0.365$

Ratio w_{0}^{2} / t_{0}

Overview

Introduction
$d=2$ Reduction
Plaquette
Flow Quantities

Conclusions

Conclusions

Exploration of $d=2$ twisted reduction

- Twisted boundary conditions allow to push the idea of reduction to the limit (TEK model).
- Choice of twist allows a variety of models with different dimensional reductions ($d=4,2,0$).
- $d=2$ reduced models have some advantages
- Computing masses/correlators
- Phase diagram and finite T of $S U(\infty)$
- Numericallly efficient: paralellization/better scaling
- Reduction works for $d=2$ if twist choosen properly: No center symmetry breaking, $O(4)$ symmetry restoration.

Drawbacks

- For precise quantities (plaquette, flow), $\mathcal{O}\left(1 / N^{2}\right), \mathcal{O}(1 / L)$ corrections are not negligible
- Better understanding on these corrections is desirable and necessary for a precise determination of continuum quantities.

