A stochastic approach to the reconstruction of spectral functions in lattice QCD

Hai-Tao Shu

Central China Normal University

in collaboration with H.-T. Ding, O. Kaczmarek, S. Mukherjee and H. Ohno

Lattice 2015 Kobe, 17.07.2015

Outline

- Introduction & Motivation
- Stochastic Optimization Method (SOM)
 - ♦ General description
 - \diamond Mock data test
 - ♦ Results from Lattice data and comparisons
- Summary & Conclusion

Spectral functions

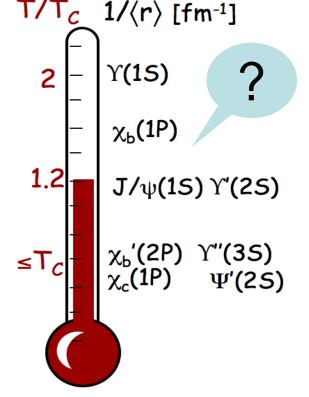
- Thermal di-lepton/photon rates (QGP probe)
- Transport properties of strongly-interacting matter
- Dissociation patterns of hadrons

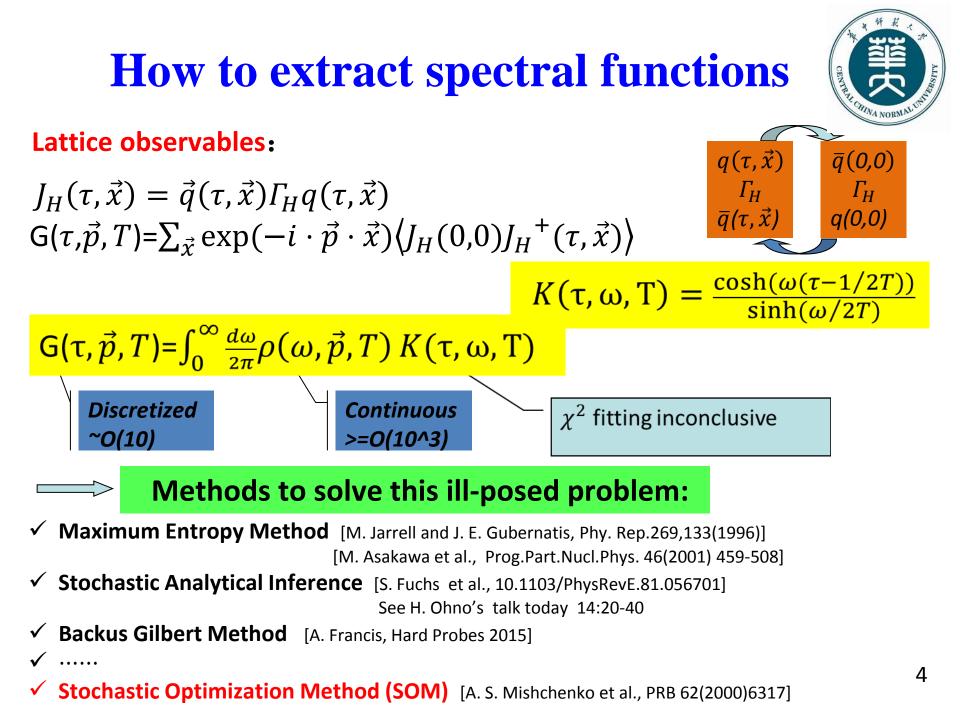
Thermal di-lepton production :

$$\frac{dW}{d\omega d^3 p} = \frac{5\alpha}{54\pi^3} \frac{1}{\omega^2 (e^{\omega/T} - 1)} \rho_V(\omega, \vec{p}, T)$$

Heavy quark diffusion coefficient :

$$D = \frac{\pi}{6\chi_{00}} \lim_{\omega \to 0} \frac{\rho_{ii}(\omega, \vec{p} = 0, T)}{\omega}$$





Comparison of SOM with MEM

Maximum Entropy Method

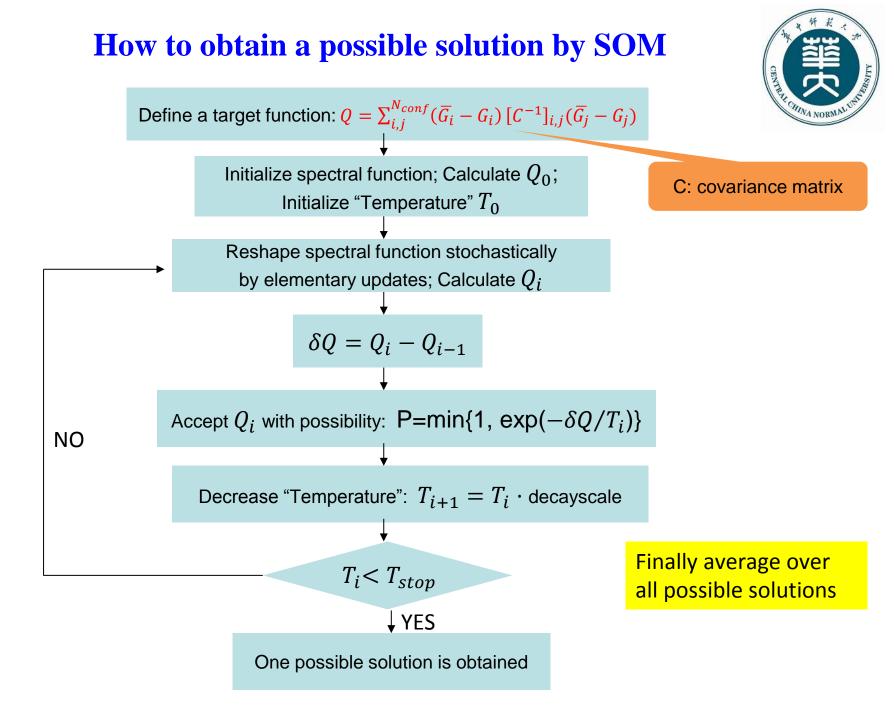
- 1 Based on Bayesian Inference.
- 2 Default model is needed.
- ③ Energy space is discretized.
- ④ The most probable solution is given.
- 5 This solution can be unique.
- 6 Integrate over α :

$$A_{out} = \int [dA] \int d\alpha A(\omega) P[A|DH\alpha m] P[\alpha|DHm]$$

Stochastic Optimization Method

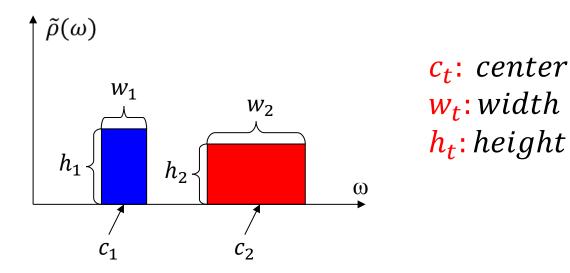
- (1) Based on Central Limit Theorem.
- ② No prior information is needed.
- ③ Energy space is continuous.
- ④ All possible solutions are given.
- (5) These solutions are independent.
- 6 Average over many solutions with equal weight:

$$A_{out} = \frac{1}{L} \sum_{j=1}^{L} \tilde{A}_j(\omega)$$



Stochastic Optimization Method

♦ Generate randomly-distributed boxes $\{P_t\} = \{c_t, w_t, h_t\}$

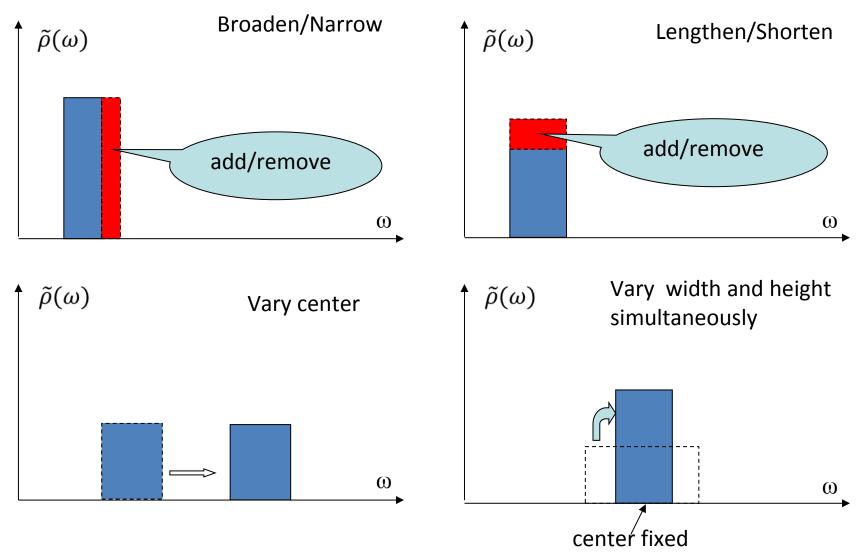


 \Rightarrow Parameterize the spectral function $\tilde{\rho}(\omega)$ as a sum of boxes

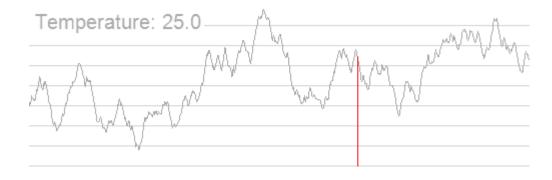
$$\tilde{\rho}(\omega) = \sum_{t}^{K} \eta(P_{t})(\omega), \quad \eta(P_{t})(\omega) = \begin{cases} h_{t}, \ \omega \in [c_{t} - w_{t}/2, c_{t} + w_{t}/2,]\\ 0, \quad otherwise \end{cases}$$

Stochastic Optimization Method

♦ Perform elementary updates to minimize target function:

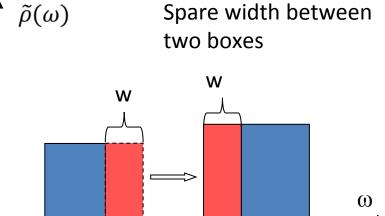


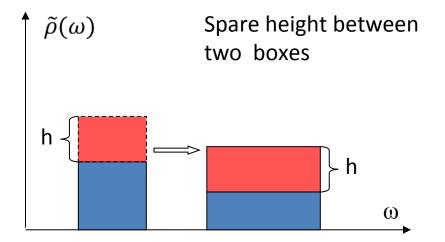
\diamond Avoid local minima by Simulated Annealing Algorithm

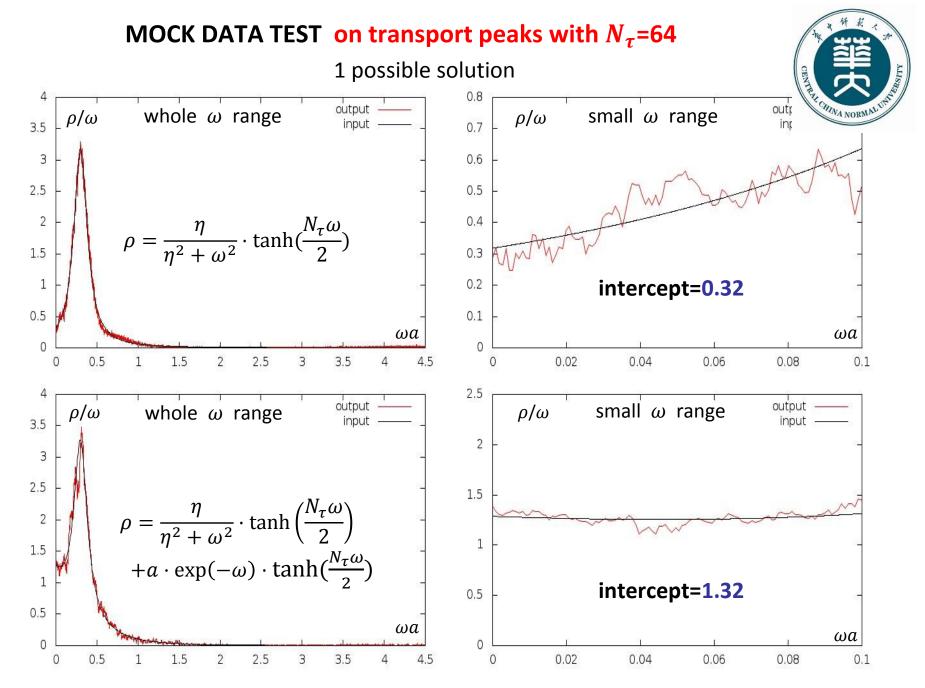


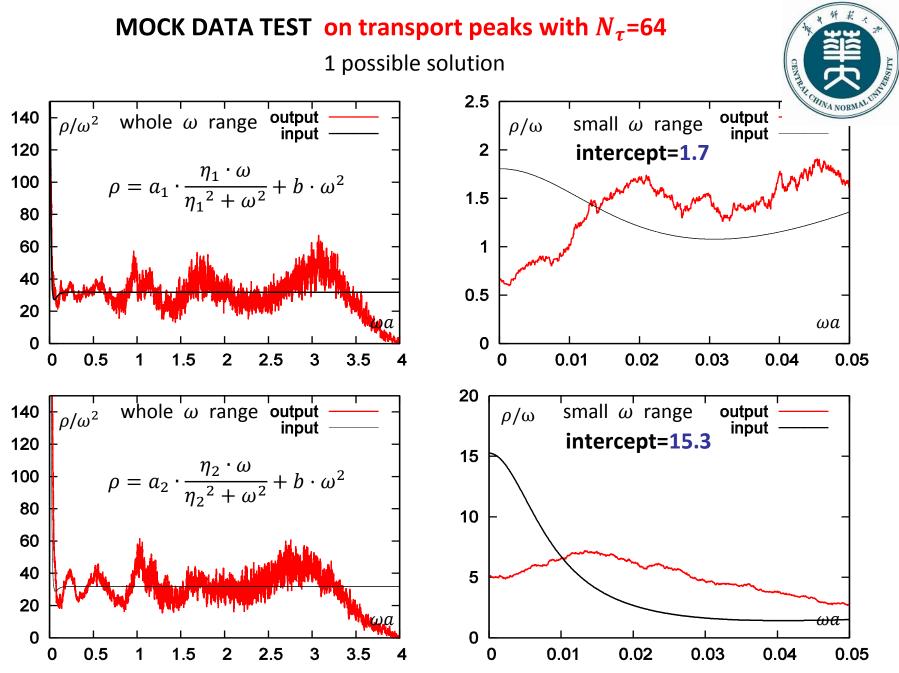
Stochastic Optimization Method

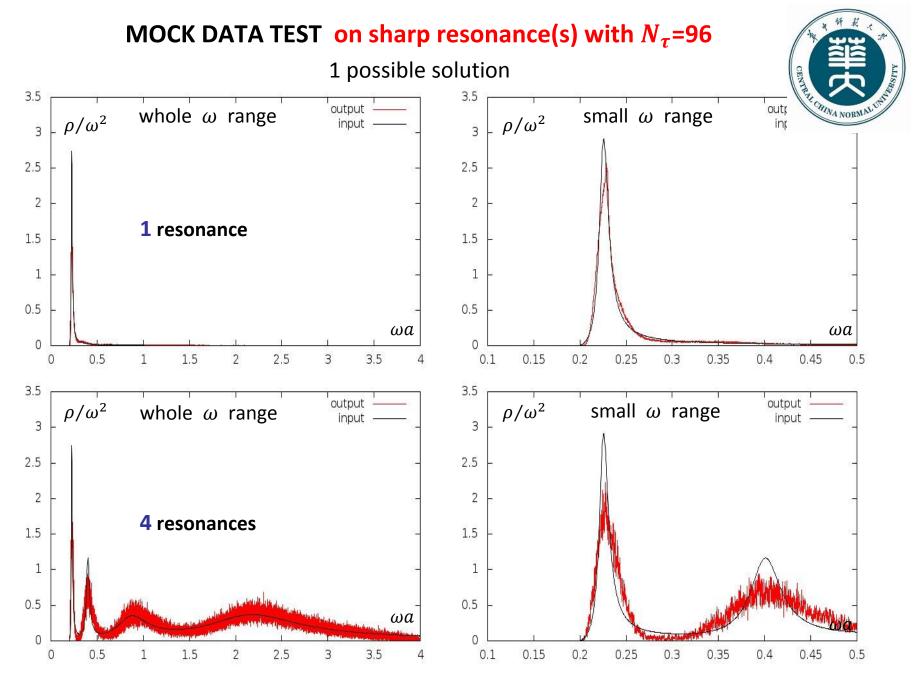
 \diamond Perform elementary updates to minimize target function:

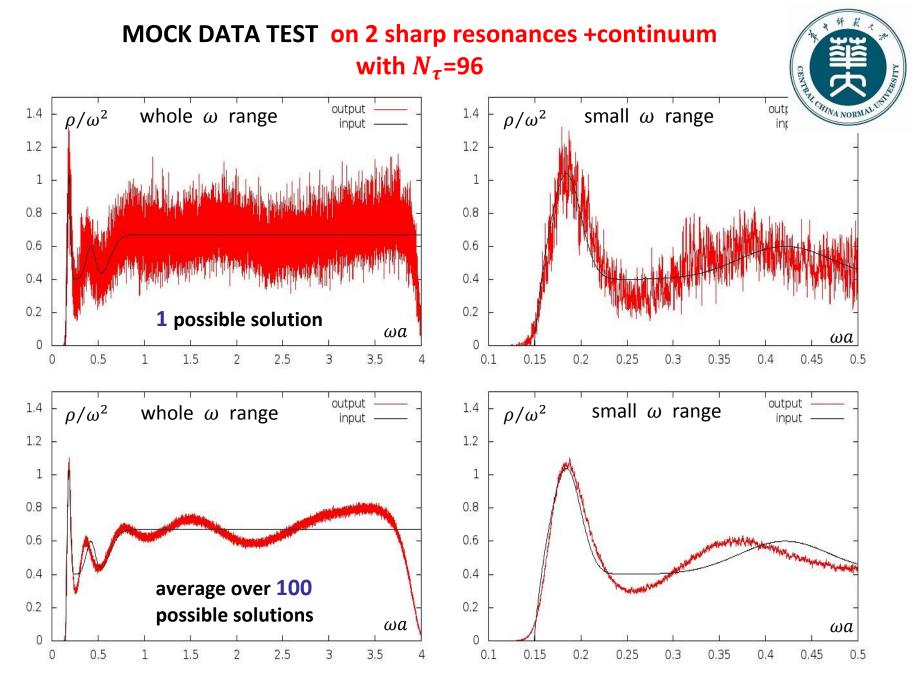


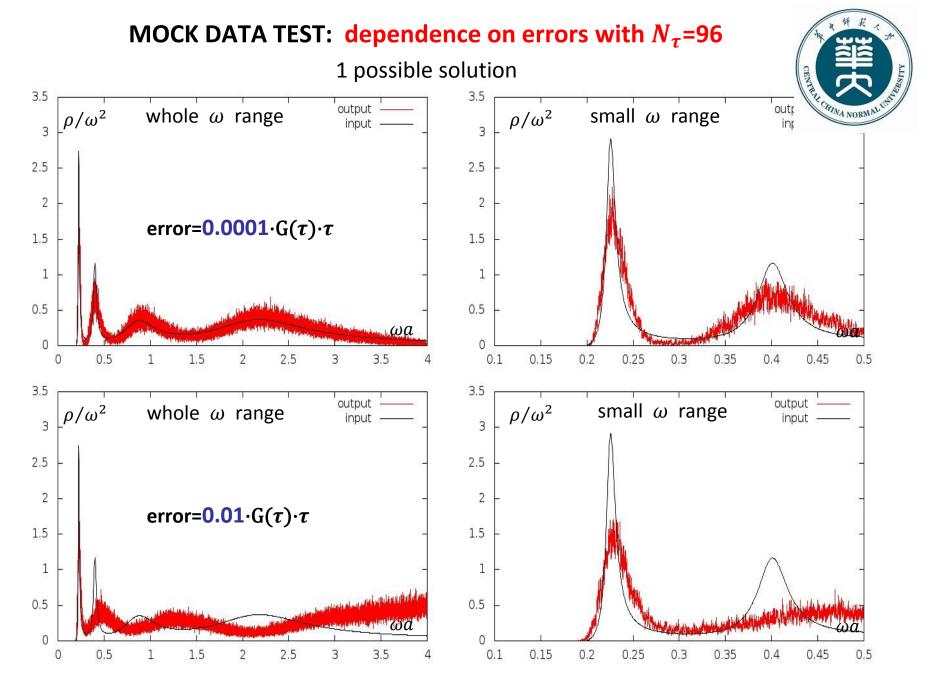


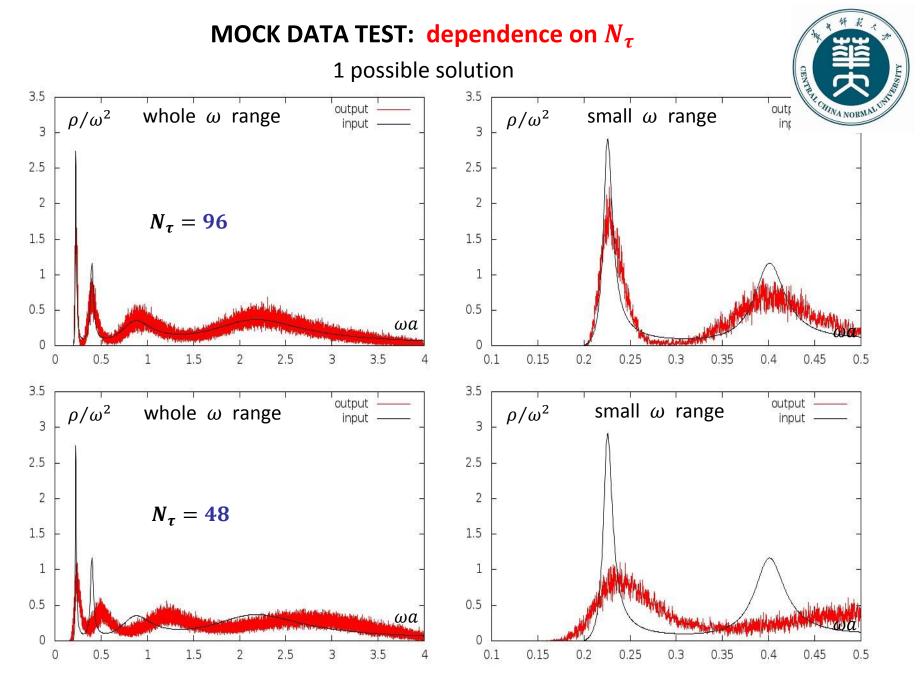


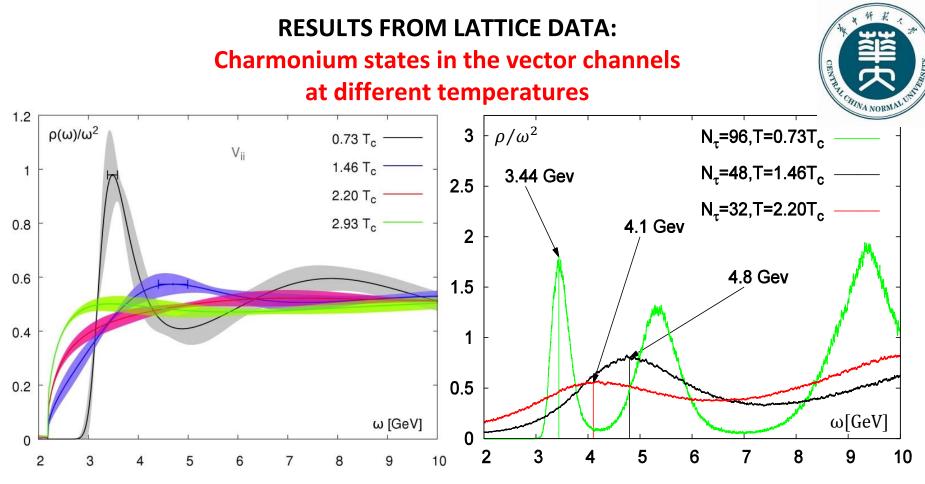












[H.T. Ding et al., Phys. Rev D 86, 014509 (2012)]

Comparison: peak-location (in [GeV]) and peak-height of the first resonance by SOM and MEM .The screening mass (pole mass) is 3.472 GeV obtained from G(z).

average over 100 possible solutions

	0.73 <i>T</i> _c	1.46 <i>T</i> _c	2.20 <i>T</i> _c
SOM	3.44/1.75	4.8/0.72	4.1/0.57
MEM	3.48/0.98	4.7/0.58	???

Summary & Outlook

- We have introduced Stochastic Optimization Method to extract spectral function from temporal correlation function in Lattice QCD
- SOM is found to work well for transport peaks and resonance peaks by using mock data
- Results obtained from charmonium correlation functions calculated from LQCD by SOM are quite similar to those by MEM
- Improvement is needed to obtain very sharp peaks

Back up

How the overlap of boxes is understood

