The $U_A(1)$ anomaly in high temperature QCD with chiral fermions on the lattice

Sayantan Sharma

July 18, 2015

In collaboration with:

V. Dick, F. Karsch, E. Laermann, S. Mukherjee.

Outline

1 The $U_A(1)$ puzzle in QCD

2 Background

-∢ ⊒ →

Outline

1 The $U_A(1)$ puzzle in QCD

- ∢ ≣ →

• Origin:

Anomalous $U_A(1)$ not an exact symmetry of QCD yet may the order of phase transition for $N_f = 2$ [Pisarki & Wilczek, 83].

- In model QFT, it is not possible to quantify the U_A(1) effects in observables.
- Need lattice studies with fermions having exact chiral/flavour symmetry and correct anomaly on the lattice.

• Origin:

Anomalous $U_A(1)$ not an exact symmetry of QCD yet may the order of phase transition for $N_f = 2$ [Pisarki & Wilczek, 83].

- In model QFT, it is not possible to quantify the U_A(1) effects in observables.
- Need lattice studies with fermions having exact chiral/flavour symmetry and correct anomaly on the lattice.

• Origin:

Anomalous $U_A(1)$ not an exact symmetry of QCD yet may the order of phase transition for $N_f = 2$ [Pisarki & Wilczek, 83].

- In model QFT, it is not possible to quantify the U_A(1) effects in observables.
- Need lattice studies with fermions having exact chiral/flavour symmetry and correct anomaly on the lattice.

What are the constituents of the hot QCD medium?

- At T = 0, anomaly effects related to instantons [t'Hooft, 76].
- Near chiral crossover transition T_c , a medium consisting of interacting instantons can explain chiral symmetry breaking \Rightarrow Instanton Liquid Model [Shuryak, 82].
- At $T >> T_c$, medium is like a dilute gas of instantons [Gross, Pisarski & Yaffe, 81].
- What is the medium made up of for $T_c \leq T \leq 2T_c$?

Spectral density when chiral symmetry is restored

• Very little known. Only recently there are very interesting results [Aoki, Fukaya & Taniguchi, 12].

 Assuming ρ(λ, m) to be analytic in m², look at chiral Ward identities of n-point function of scalar & pseudo-scalar currents.

 ρ(λ, m → 0) ~ λ³ ⇒ U_A(1) breaking effects invisible in these sectors
 for upto 6-point functions.

What to look for: Non-analyticities in eigenvalue spectrum

 $U_A(1)$ Not an exact symmetry \rightarrow what observables to look for? Degeneracy of the correlators with specific quantum numbers in meson channels [Shuryak, 94]

What to look for: Non-analyticities in eigenvalue spectrum

• Either look at the difference of the integrated correlators

$$\chi_{\pi} - \chi_{\delta} = \int d^4x \left[\langle i\pi^+(x)i\pi^-(0) \rangle - \langle \delta^+(x)\delta^-(0) \rangle \right]$$

• Equivalently study $\rho(\lambda, m_f)$ of the Dirac operator.

$$\chi_{\pi} - \chi_{\delta} \stackrel{V \to \infty}{\to} \int_{0}^{\infty} d\lambda \frac{4m_{f}^{2} \ \rho(\lambda, m_{f})}{(\lambda^{2} + m_{f}^{2})^{2}} \ , \ \langle \bar{\psi}\psi \rangle \stackrel{V \to \infty}{\to} \int_{0}^{\infty} d\lambda \frac{2m_{f} \ \rho(\lambda, m_{f})}{(\lambda^{2} + m_{f}^{2})^{2}}$$

- If chiral symmetry restored: $\lim_{m_f\to 0} \lim_{V\to\infty} \rho(0, m_f) \to 0$.
- A gap in the infrared spectrum $\Rightarrow U_A(1)$ restored
- chiral symmetry restored + $U_A(1)$ broken if: $\lim_{\lambda \to 0} \rho(\lambda, m_f) \to \delta(\lambda) m_f^{\alpha}$, $1 < \alpha < 2...$ Look for non-analyticities in eigenvalue spectrum

Chiral fermions on the lattice

- Only two well defined chiral fermion formulations on the lattice that satisfy Ginsparg Wilson relation $\{\gamma_5, D\} = aD\gamma_5D$ [Ginsparg & Wilson, 82]
- Overlap fermions [Narayanan & Neuberger, 94, Neuberger, 98] have exact chiral symmetry on the lattice.

$$D_{ov} = M(1 + \gamma_5 \operatorname{sgn}(\gamma_5 D_W(-M))), \operatorname{sgn}(A) = A/\sqrt{A.A.}$$

• Domain wall fermions _[Kaplan 92, Shamir 95] in the limit $N_5
ightarrow \infty$

 $D_{DW} = M(1 - \gamma_5 \operatorname{sgn}(\ln |\mathcal{T}|)), \ \mathcal{T} = (1 + a_5 \gamma_5 D_W P_+)^{-1} (1 - a_5 \gamma_5 D_W P_-).$

• For finite a_5 , infrared spectra of D_{DW} different from D_{ov} .

(김희) 김 국가 김 국가 영화

Outline

1) The $U_A(1)$ puzzle in QCD

< E

What did we know so far

- D_{ov} has an exact index theorem like in the continuum \Rightarrow the zero modes of D_{ov} related to topological structures of the underlying gauge field. [Hasenfratz, Laliena & Niedermeyer, 98].
- Used overlap as valence operator to probe the infrared spectrum of Highly Improved Staggered Quarks(HISQ).
- $U_A(1)$ broken near T_c and near-zero modes primarily responsible for it.

Sayantan Sharma

QCD medium at $1.5 T_c$

• HYP smearing [Hasenfratz & Knechtli, 02] expected to eliminate dislocations

- Smearing does not eliminate the near zero modes.
- At 1.5 T_c , QCD medium is a dilute gas of small instantons r = 0.23 fm, $\rho = 0.15$ fm⁻⁴

- ∢ ⊒ →

Outline

1) The $U_A(1)$ puzzle in QCD

2 Background

4 Conclusions

⊸∢ ≣ ≯

- We study the eigenspectrum of large volume Möbius domain wall configurations using the overlap operator.
- Previous independent study at $m_{\pi} = 200$ MeV found hints for the presence of a near-zero peak [Columbia-BNL-LLNL, 13].
- We look at how robust the peak is..in particular to lowering lower pion mass and larger volumes.

Numerical details

- Möbius domain wall fermions on 5D hypercube with N = 32 sites along each spatial 4-dim, $N_5 = 16$ and $N_{\tau} = 8$ sites along temporal dim.
- Volumes, $V = N^3 a^3$, Temperature, $T = \frac{1}{N_{ra}}$, *a* is the lattice spacing.
- Box size: $m_{\pi} V^{1/3} > 4$
- 2 light+1 heavy flavour
- Input m_s physical ≈ 100 MeV and $m_s/m_l = 27, 11$ $\Rightarrow m_{\pi} = 135, 200$ MeV.
- Temperatures and configurations [Columbia-BNL-LLNL, 13,14]:

Т	# configurations	$m_{\pi}({ m MeV})$	# eigenvalues/config.
1.08 T _c	140	135	50
1.08 T _c	100	200	50
1.2 T _c	150	135	50
1.2 T _c	110	200	50

Implementing the overlap operator

- Matrix sign function non-trivial!
- For the lowest modes sign function was computed explicitly from eigenvalues of D_W .
- For the higher modes, sign function approximated as a Zolotarev Rational Polynomial with 15 terms.
- The sign function is computed as precise as 10^{-8} .

Eigenvalue computation

- The Kalkreuter-Simma Ritz algorithm for eigenvalues of $D_{ov}^{\dagger} D_{ov}$.
- Convergence criterion: $\epsilon^2 < 10^{-8}$.

• • = •

Ginsparg-Wilson relation

- A few configurations with near-zero modes have larger GW violations than average.
- No general trend observed

Eigenvalue distribution near T_c

- General features: Near zero mode peak +bulk
- We fit to the ansatz: $\rho(\lambda) = \frac{A\epsilon}{\lambda^2 + A} + B\lambda^{\gamma}$
- Bulk rises linearly as λ , no gap seen.

• No gap even when quark mass reduced!

Eigenvalue distribution near T_c

- General features: Near zero mode peak +bulk
- We fit to the ansatz: $\rho(\lambda) = \frac{A\epsilon}{\lambda^2 + A} + B\lambda^{\gamma}$
- Bulk rises linearly as λ , no gap seen.
- No gap even when quark mass reduced!

At higher temperatures..

- The rise of the bulk is $\gamma \sim 2$.
- Infrared modes becomes rarer with a small peak.

Topological charge distribution

- The higher Q configurations suppressed with temperature.
- Not sensitive to the quark mass.

A closer look at the near-zero modes

- The near-zero modes sensitive to the sea quark mass \rightarrow sparse when m_{π} heavier but the peak survives!
- Falls by more than a third at $1.2T_c$.

Near zero modes and $U_A(1)$

- m_s tuned by matching RG invariant combination $\frac{m_s \langle \bar{\psi} \psi \rangle_l m_l \langle \bar{\psi} \psi \rangle_s}{T^4}$
- Significant contribution comes from the near zero modes than the bulk \Rightarrow Near zero modes primarily responsible for $U_A(1)$ breaking

Comparing with earlier results

• The renormalized spectra of dynamical Domain wall fermions [Columbia-BNL-LLNL, 13] agrees very well with what we measured with the overlap.

Eigenvalue spectra of HISQ vs Domain wall fermions

- The bulk HISQ spectra with Goldstone pion mass 160MeV consistent with DW with $m_{\pi} = 200$ MeV at $1.2T_c$.
- More near-zero states in HISQ than domain wall..taste effects?

A closer look at near-zero modes

Near-zero modes due to an interacting instanton-antiinstanton pair.

Topological susceptibility across T_c

• The topological susceptibility changes gradually compared to pure gauge theory.

Outline

1) The $U_A(1)$ puzzle in QCD

2 Background

3 Our results

⊸∢ ≣ ≯

Conclusions

- We looked at the low-lying eigenspectrum of Möbius domain wall fermions with the overlap operator.
- On large volume lattice we found that $U_A(1)$ broken for $T \leq 1.2T_c$. The fermion near-zero modes are mainly responsible for its breaking.
- At 1.2 T_c the instanton-antiinstanton pair start separating \rightarrow towards a dilute gas?

