The $U_{A}(1)$ anomaly in high temperature QCD with chiral fermions on the lattice

Sayantan Sharma

BRDDKHRNEN
 NATIONAL LABORATORY

July 18, 2015

In collaboration with:
V. Dick, F. Karsch, E. Laermann, S. Mukherjee.

Outline

(1) The $U_{A}(1)$ puzzle in QCD
(2) Background
(3) Our results
(4) Conclusions

Outline

(1) The $U_{A}(1)$ puzzle in QCD
(2) Background
(3) Our results
4. Conclusions

The $U_{A}(1)$ puzzle

- Origin:

Anomalous $U_{A}(1)$ not an exact symmetry of QCD yet may the order of phase transition for $N_{f}=2$ [Pisarki \& Wilczek, 83].

The $U_{A}(1)$ puzzle

- Origin:

Anomalous $U_{A}(1)$ not an exact symmetry of QCD yet may the order of phase transition for $N_{f}=2$ [Pisarki \& Wilczek, 83].

- In model QFT, it is not possible to quantify the $U_{A}(1)$ effects in observables.

The $U_{A}(1)$ puzzle

- Origin:

Anomalous $U_{A}(1)$ not an exact symmetry of QCD yet may the order of phase transition for $N_{f}=2$ [Pisarki \& Wiczek, 83].

- In model QFT, it is not possible to quantify the $U_{A}(1)$ effects in observables.
- Need lattice studies with fermions having exact chiral/flavour symmetry and correct anomaly on the lattice.

What are the constituents of the hot QCD medium?

- At $T=0$, anomaly effects related to instantons $\left[t^{\prime} H\right.$ ooft, 76$]$.
- Near chiral crossover transition T_{c}, a medium consisting of interacting instantons can explain chiral symmetry breaking \Rightarrow Instanton Liquid Model [Shuryak, 82].
- At $T \gg T_{c}$, medium is like a dilute gas of instantons
[Gross, Pisarski \& Yaffe, 81].
- What is the medium made up of for $T_{c} \leq T \leq 2 T_{c}$?

Spectral density when chiral symmetry is restored

- Very little known. Only recently there are very interesting results [Aoki, Fukaya \& Taniguchi, 12].
- Assuming $\rho(\lambda, m)$ to be analytic in m^{2}, look at chiral Ward identities of n-point function of scalar \& pseudo-scalar currents.
- $\rho(\lambda, m \rightarrow 0) \sim \lambda^{3} \Rightarrow U_{A}(1)$ breaking effects invisible in these sectors for upto 6-point functions.

What to look for: Non-analyticities in eigenvalue spectrum

$U_{A}(1)$ Not an exact symmetry \rightarrow what observables to look for?
Degeneracy of the correlators with specific quantum numbers in meson channels [Shuryak, 94]

What to look for: Non-analyticities in eigenvalue spectrum

- Either look at the difference of the integrated correlators

$$
\chi_{\pi}-\chi_{\delta}=\int d^{4} x\left[\left\langle i \pi^{+}(x) i \pi^{-}(0)\right\rangle-\left\langle\delta^{+}(x) \delta^{-}(0)\right\rangle\right]
$$

- Equivalently study $\rho\left(\lambda, m_{f}\right)$ of the Dirac operator.

$$
\chi_{\pi}-\chi_{\delta} \xrightarrow{v_{\rightarrow \infty}} \int_{0}^{\infty} d \lambda \frac{4 m_{f}^{2} \rho\left(\lambda, m_{f}\right)}{\left(\lambda^{2}+m_{f}^{2}\right)^{2}},\langle\bar{\psi} \psi\rangle \xrightarrow{V \rightarrow \infty} \int_{0}^{\infty} d \lambda \frac{2 m_{f} \rho\left(\lambda, m_{f}\right)}{\left(\lambda^{2}+m_{f}^{2}\right)}
$$

- If chiral symmetry restored: $\lim _{m_{f} \rightarrow 0} \lim _{V \rightarrow \infty} \rho\left(0, m_{f}\right) \rightarrow 0$.
- A gap in the infrared spectrum $\Rightarrow U_{A}(1)$ restored
- chiral symmetry restored $+U_{A}(1)$ broken if: $\lim _{\lambda \rightarrow 0} \rho\left(\lambda, m_{f}\right) \rightarrow \delta(\lambda) m_{f}^{\alpha}, 1<\alpha<2 \ldots$ Look for non-analyticities in eigenvalue spectrum

Chiral fermions on the lattice

- Only two well defined chiral fermion formulations on the lattice that satisfy Ginsparg Wilson relation $\left\{\gamma_{5}, D\right\}=a D \gamma_{5} D$ [Ginsparg \& Wison, 82]
- Overlap fermions [Narayanan \& Neuberger, 94, Neuberger, 98] have exact chiral symmetry on the lattice.

$$
D_{o v}=M\left(1+\gamma_{5} \operatorname{sgn}\left(\gamma_{5} D_{W}(-M)\right)\right), \mathbf{s g n}(A)=A / \sqrt{A \cdot A}
$$

- Domain wall fermions [Kaplan 92, Shamir 95] in the limit $N_{5} \rightarrow \infty$

$$
D_{D W}=M\left(1-\gamma_{5} \mathbf{s g n}(\ln |T|)\right), T=\left(1+a_{5} \gamma_{5} D_{W} P_{+}\right)^{-1}\left(1-a_{5} \gamma_{5} D_{W} P_{-}\right)
$$

- For finite a_{5}, infrared spectra of $D_{D W}$ different from $D_{o v}$.

Outline

(1) The $U_{A}(1)$ puzzle in QCD

(2) Background

(3) Our results

What did we know so far

- $D_{\text {ov }}$ has an exact index theorem like in the continuum \Rightarrow the zero modes of $D_{\text {ov }}$ related to topological structures of the underlying gauge field.
[Hasenfratz, Laliena \& Niedermeyer, 98].
- Used overlap as valence operator to probe the infrared spectrum of Highly Improved Staggered Quarks(HISQ).
- $U_{A}(1)$ broken near T_{c} and near-zero modes primarily responsible for it.

QCD medium at $1.5 T_{c}$

- HYP smearing [Hasenfratz \& Knechtli, 02] expected to eliminate dislocations

- Smearing does not eliminate the near zero modes.
- At $1.5 T_{c}$, QCD medium is a dilute gas of small instantons $r=0.23 \mathrm{fm}, \quad \rho=0.15 \mathrm{fm}^{-4}$

Outline

(1) The $U_{A}(1)$ puzzle in QCD
(2) Background
(3) Our results

(4) Conclusions

Our Set-up

- We study the eigenspectrum of large volume Möbius domain wall configurations using the overlap operator.
- Previous independent study at $m_{\pi}=200 \mathrm{MeV}$ found hints for the presence of a near-zero peak [Columbia-BNL-LLNL, 13].
- We look at how robust the peak is..in particular to lowering lower pion mass and larger volumes.

Numerical details

- Möbius domain wall fermions on 5D hypercube with $N=32$ sites along each spatial 4-dim, $N_{5}=16$ and $N_{\tau}=8$ sites along temporal dim.
- Volumes, $V=N^{3} a^{3}$, Temperature, $T=\frac{1}{N_{\tau} a}$, a is the lattice spacing.
- Box size: $m_{\pi} V^{1 / 3}>4$
- 2 light +1 heavy flavour
- Input m_{s} physical $\approx 100 \mathrm{MeV}$ and $m_{s} / m_{l}=27,11$ $\Rightarrow m_{\pi}=135,200 \mathrm{MeV}$.
- Temperatures and configurations [Columbia-BNL-LLNL, 13,14]:

T	\# configurations	$m_{\pi}(\mathrm{MeV})$	\# eigenvalues/config.
$1.08 T_{c}$	140	135	50
$1.08 T_{c}$	100	200	50
$1.2 T_{c}$	150	135	50
$1.2 T_{c}$	110	200	50

Numerical details

Implementing the overlap operator

- Matrix sign function non-trivial!
- For the lowest modes sign function was computed explicitly from eigenvalues of D_{W}.
- For the higher modes, sign function approximated as a Zolotarev Rational Polynomial with 15 terms.
- The sign function is computed as precise as 10^{-8}.

Eigenvalue computation

- The Kalkreuter-Simma Ritz algorithm for eigenvalues of $D_{\text {ov }}^{\dagger} D_{\text {ov }}$.
- Convergence criterion: $\epsilon^{2}<10^{-8}$.

Ginsparg-Wilson relation

- A few configurations with near-zero modes have larger GW violations than average.
- No general trend observed

Eigenvalue distribution near T_{c}

- General features: Near zero mode peak +bulk
- We fit to the ansatz: $\rho(\lambda)=\frac{A \epsilon}{\lambda^{2}+A}+B \lambda^{\gamma}$
- Bulk rises linearly as λ, no gap seen.

Eigenvalue distribution near T_{c}

- General features: Near zero mode peak +bulk
- We fit to the ansatz: $\rho(\lambda)=\frac{A \epsilon}{\lambda^{2}+A}+B \lambda^{\gamma}$
- Bulk rises linearly as λ, no gap seen.
- No gap even when quark mass reduced!

At higher temperatures..

- The rise of the bulk is $\gamma \sim 2$.
- Infrared modes becomes rarer with a small peak.

Topological charge distribution

- The higher Q configurations suppressed with temperature.
- Not sensitive to the quark mass.

A closer look at the near-zero modes

- The near-zero modes sensitive to the sea quark mass \rightarrow sparse when m_{π} heavier but the peak survives!
- Falls by more than a third at $1.2 T_{c}$.

Near zero modes and $U_{A}(1)$

- m_{s} tuned by matching RG invariant combination $\frac{m_{s}\langle\bar{\psi} \psi\rangle_{I}-m_{l}\langle\bar{\psi} \psi\rangle_{s}}{T^{4}}$.
- Significant contribution comes from the near zero modes than the bulk \Rightarrow Near zero modes primarily responsible for $U_{A}(1)$ breaking

Comparing with earlier results

- The renormalized spectra of dynamical Domain wall fermions
[Columbia-BNL-LLNL, 13] agrees very well with what we measured with the overlap.

Eigenvalue spectra of HISQ vs Domain wall fermions

- The bulk HISQ spectra with Goldstone pion mass 160 MeV consistent with DW with $m_{\pi}=200 \mathrm{MeV}$ at $1.2 T_{c}$.
- More near-zero states in HISQ than domain wall..taste effects?

A closer look at near-zero modes

Near-zero modes due to an interacting instanton-antiinstanton pair.

Topological susceptibility across T_{c}

- The topological susceptibility changes gradually compared to pure gauge theory.

Outline

(1) The $U_{A}(1)$ puzzle in QCD

(2) Background
(3) Our results
(4) Conclusions

Conclusions

- We looked at the low-lying eigenspectrum of Möbius domain wall fermions with the overlap operator.
- On large volume lattice we found that $U_{A}(1)$ broken for $T \leq 1.2 T_{C}$. The fermion near-zero modes are mainly responsible for its breaking.
- At $1.2 T_{c}$ the instanton-antiinstanton pair start separating \rightarrow towards a dilute gas?

