Study of high density phase transition in lattice QCD with canonical approach Yusuke Taniguchi (University of Tsukuba) for Zn Collaboration

R.Fukuda (Tokyo) A.Nakamura (RCNP) S.Oka (Rikkyo) A.Suzuki (Tsukuba)

het-lat/1504.04471

 High density region
 by experiments
 J-PARC
 RIKEN-RIBF
 GSI-FAIR
 Neutron start with
 2 x Solar mass

 High density region
 by experiments
 J-PARC
 RIKEN-RIBF
 GSI-FAIR
 Neutron start with
 2 x Solar mass

Our tool: Lattice QCD Complex action Sign problem

$$Z_G(T,\mu,V) = \operatorname{Tr}\left[\exp\left(-\frac{1}{T}\left(\hat{H} - \mu\hat{N}\right)\right)\right]$$

Grand canonical partition function

$$Z_G(T,\mu,V) = \operatorname{Tr}\left[\exp\left(-\frac{1}{T}\left(\hat{H}-\mu\hat{N}\right)\right)\right]$$

for every energy and number of particles

Grand canonical partition function

$$Z_G(T,\mu,V) = \operatorname{Tr}\left[\exp\left(-\frac{1}{T}\left(\hat{H}-\mu\hat{N}\right)\right)\right]$$

for every energy and number of particles For QCD $\left[\hat{H}, \hat{N}\right] = 0$

$$Z_G(T,\mu,V) = \operatorname{Tr}\left[\exp\left(-\frac{1}{T}\left(\hat{H}-\mu\hat{N}\right)\right)\right]$$
$$= \sum_n \sum_E \left\langle E, n \left|\exp\left(-\frac{\hat{H}}{T}+\frac{\mu}{T}n\right)\right| E, n \right\rangle$$

$$Z_G(T, \mu, V) = \operatorname{Tr}\left[\exp\left(-\frac{1}{T}\left(\hat{H} - \mu\hat{N}\right)\right)\right]$$
$$= \sum_n \sum_E \left\langle E, n \left| \exp\left(-\frac{\hat{H}}{T} + \frac{\mu}{T}n\right) \right| E, n \right\rangle$$
$$= \sum_n Z_C(T, n, V)\xi^n$$

$$Z_G(T, \mu, V) = \operatorname{Tr}\left[\exp\left(-\frac{1}{T}\left(\hat{H} - \mu\hat{N}\right)\right)\right]$$
$$= \sum_n \sum_E \left\langle E, n \left| \exp\left(-\frac{\hat{H}}{T} + \frac{\mu}{T}n\right) \right| E, n \right\rangle$$
$$= \sum_n Z_C(T, n, V)\xi^n \quad \text{Fugacity} \quad \xi = e^{\frac{\mu}{T}}$$

$$Z_{G}(T,\mu,V) = \operatorname{Tr}\left[\exp\left(-\frac{1}{T}\left(\hat{H}-\mu\hat{N}\right)\right)\right]$$
$$= \sum_{n}\sum_{E}\left\langle E,n\left|\exp\left(-\frac{\hat{H}}{T}+\frac{\mu}{T}n\right)\right|E,n\right\rangle$$
$$= \sum_{n}Z_{C}(T,n,V)\xi^{n} \quad \text{Fugacity} \quad \xi = e^{\frac{\mu}{T}}$$
$$\frac{1}{2}\operatorname{Contended} = e^{-\frac{\mu}{T}}$$

$$Z_C(T, n, V) = \sum_E \left\langle E, n \left| \exp\left(-\frac{\hat{H}}{T}\right) \right| E, n \right\rangle$$

$$Z_{G}(T,\mu,V) = \operatorname{Tr}\left[\exp\left(-\frac{1}{T}\left(\hat{H}-\mu\hat{N}\right)\right)\right]$$

Fugacity

$$=\sum_{n}\sum_{E}\left\langle E,n\left|\exp\left(-\frac{\hat{H}}{T}+\frac{\mu}{T}n\right)\right|E,n\right\rangle$$

expansion

$$=\sum_{n}\frac{Z_{C}(T,n,V)}{\xi^{n}}$$
Fugacity

$$\xi = e^{\frac{\mu}{T}}$$

Canonical partition function

$$Z_{C}(T,n,V) = \sum_{E}\left\langle E,n\left|\exp\left(-\frac{\hat{H}}{T}\right)\right|E,n\right\rangle$$

$$Z_{G}(T,\mu,V) = \operatorname{Tr}\left[\exp\left(-\frac{1}{T}\left(\hat{H}-\mu\hat{N}\right)\right)\right]$$

$$= \sum_{n}\sum_{E}\left\langle E,n\left|\exp\left(-\frac{\hat{H}}{T}+\frac{\mu}{T}n\right)\right|E,n\right\rangle$$

$$= \sum_{n}\sum_{E}Z_{C}(T,n,V)\xi^{n} \quad \text{Fugacity} \quad \xi = e^{\frac{\mu}{T}}$$

$$Z_{C}(T,n,V) = \sum_{E}\left\langle E,n\left|\exp\left(-\frac{\hat{H}}{T}\right)\right|E,n\right\rangle$$

$$= \sum_{E}\left\langle E,n\left|\exp\left(-\frac{\hat{H}}{T}\right)\right|E,n\right\rangle$$

$$= \sum_{E}\left\langle E,n\left|\exp\left(-\frac{\hat{H}}{T}\right)\right|E,n\right\rangle$$

$$= \sum_{E}\left\langle E,n\left|\exp\left(-\frac{\hat{H}}{T}\right)\right|E,n\right\rangle$$

Fugacity expansion is embedded in hopping parameter expansion

Fugacity expansion is embedded in hopping parameter expansion

Wilson Dirac operator

 $D_W(\mu) = 1 - \kappa (Q_s + T) - \kappa e^{\mu a} Q_4^+ - \kappa e^{-\mu a} Q_4^-$

Fugacity expansion is embedded in hopping parameter expansion

Wilson Dirac operator

$$D_{W}(\mu) = 1 - \kappa (Q_{s} + T) - \kappa e^{\mu a} Q_{4}^{+} - \kappa e^{-\mu a} Q_{4}^{-}$$
$$\left(Q_{\mu}^{+}\right)_{nm} = (1 - \gamma_{\mu}) U_{\mu}(n) \delta_{m,n+\hat{\mu}}$$
$$\left(Q_{\mu}^{-}\right)_{nm} = (1 + \gamma_{\mu}) U_{\mu}^{\dagger}(m) \delta_{m,n-\hat{\mu}}$$

Fugacity expansion is embedded in hopping parameter expansion

Wilson Dirac operator

$$D_W(\mu) = 1 - \kappa (Q_s + T) - \kappa e^{\mu a} Q_4^+ - \kappa e^{-\mu a} Q_4^-$$
$$(Q_\mu^+)_{nm} = (1 - \gamma_\mu) U_\mu(n) \delta_{m,n+\hat{\mu}}$$
$$(Q_\mu^-)_{nm} = (1 + \gamma_\mu) U_\mu^\dagger(m) \delta_{m,n-\hat{\mu}}$$
expansion in $\kappa = \frac{1}{2(ma+4)}$ expansion in $e^{\pm \mu a}$

Instead of Det, expand $\text{TrLog}D_W(\mu)$

$$\operatorname{TrLog}(1 - \kappa Q(\mu)) = -\sum_{n} \frac{\kappa^{n}}{n} \operatorname{Tr}\left(Q_{s} + e^{\mu a}Q_{4}^{+} + e^{-\mu a}Q_{4}^{-}\right)^{n}$$

$$TrLog(1 - \kappa Q(\mu)) = -\sum_{n} \frac{\kappa^{n}}{n} Tr \left(Q_{s} + e^{\mu a} Q_{4}^{+} + e^{-\mu a} Q_{4}^{-}\right)^{n}$$

Hopping parameter expansion
expansion in
$$\kappa = \frac{1}{2(ma+4)}$$
 expansion in $e^{\pm\mu a}$
Instead of Det, expand $\operatorname{TrLog} D_W(\mu)$
 $\operatorname{TrLog}(1 - \kappa Q(\mu)) = -\sum_n \frac{\kappa^n}{n} \operatorname{Tr}(Q_s + e^{\mu a}Q_4^+ + e^{-\mu a}Q_4^-)^n$
quark hopping need to make a loop

Hopping parameter expansion
expansion in
$$\kappa = \frac{1}{2(ma+4)}$$
 expansion in $e^{\pm\mu a}$
Instead of Det, expand $\operatorname{TrLog} D_W(\mu)$
 $\operatorname{TrLog}(1 - \kappa Q(\mu)) = -\sum_n \frac{\kappa^n}{n} \operatorname{Tr}(Q_s + e^{\mu a}Q_4^+ + e^{-\mu a}Q_4^-)^n$
quark hopping need to make a loop
 $(e^{\pm\mu N_t a})^m$ survives = Fugacity $\xi^m = (e^{\pm\mu/T})^m$

Re-sum the expansion in temporal winding

Canonical partition function Zc(n)Evaluation of Det $Dw(\mu)$ re-weighting

Canonical partition function Zc(n)Evaluation of Det Dw(μ) \leftarrow re-weighting

$$Z_G(\mu) = \int DU \frac{\text{Det}D_W(\mu)}{\text{Det}D_W(\mu_0)} \text{Det}D_W(\mu_0) e^{-S_G}$$

Canonical partition function Zc(n) Evaluation of Det Dw(μ) \leftarrow re-weighting $Z_G(\mu) = \int DU \frac{\text{Det}D_W(\mu)}{\text{Det}D_W(\mu_0)} \text{Det}D_W(\mu_0) e^{-S_G}$

0 or imaginary

Canonical partition function Zc(n) Kentucky '08 Evaluation of Det $Dw(\mu)$ — re-weighting $Z_G(\mu) = \int DU \frac{\text{Det}D_W(\mu)}{\text{Det}D_W(\mu_0)} \text{Det}D_W(\mu_0) e^{-S_G}$ $= \left\langle \frac{\text{Det}D_W(\mu)}{\text{Det}D_W(\mu_0)} \right\rangle_0 Z_G(\mu_0)$

Canonical partition function Zc(n) Kentucky '08 Evaluation of Det $Dw(\mu)$ — re-weighting $Z_G(\mu) = \int DU \frac{\text{Det}D_W(\mu)}{\text{Det}D_W(\mu_0)} \text{Det}D_W(\mu_0) e^{-S_G}$ $= \left\langle \frac{\text{Det}D_W(\mu)}{\text{Det}D_W(\mu_0)} \right\rangle_0 Z_G(\mu_0)$ hopping parameter exp. $= \left\langle \frac{\exp\left(\sum_{k=-\infty}^{\infty} W_k \xi^k\right)}{\operatorname{Det} D_W(\mu_0)} \right\rangle \ Z_G(\mu_0)$

Canonical partition function Zc(n) Kentucky '08 Evaluation of Det $Dw(\mu)$ — re-weighting $Z_G(\mu) = \int DU \frac{\text{Det}D_W(\mu)}{\text{Det}D_W(\mu_0)} \text{Det}D_W(\mu_0) e^{-S_G}$ $= \left\langle \frac{\text{Det}D_W(\mu)}{\text{Det}D_W(\mu_0)} \right\rangle_0 Z_G(\mu_0)$ hopping parameter exp. $\sum_{k=-\infty}^{\infty} Z_C(n)\xi^n = \left\langle \frac{\exp\left(\sum_{k=-\infty}^{\infty} W_k \xi^k\right)}{\operatorname{Det} D_W(\mu_0)} \right\rangle_0 Z_G(\mu_0)$

Canonical partition function Zc(n) Kentucky '08 Evaluation of Det $Dw(\mu)$ — re-weighting $Z_G(\mu) = \int DU \frac{\text{Det}D_W(\mu)}{\text{Det}D_W(\mu_0)} \text{Det}D_W(\mu_0) e^{-S_G}$ $= \left\langle \frac{\text{Det}D_W(\mu)}{\text{Det}D_W(\mu_0)} \right\rangle_0 Z_G(\mu_0)$ hopping parameter exp. $\sum_{k=-\infty}^{\infty} \left(Z_C(n) \xi^n = \left\langle \frac{\exp\left(\sum_{k=-\infty}^{\infty} W_k \xi^k\right)}{\operatorname{Det} D_W(\mu_0)} \right\rangle Z_G(\mu_0)$

Canonical partition function Zc(n) Kentucky '08 Evaluation of Det $Dw(\mu)$ \leftarrow re-weighting $Z_G(\mu) = \int DU \frac{\text{Det}D_W(\mu)}{\text{Det}D_W(\mu_0)} \text{Det}D_W(\mu_0) e^{-S_G}$ $= \left\langle \frac{\text{Det}D_W(\mu)}{\text{Det}D_W(\mu_0)} \right\rangle_0 Z_G(\mu_0)$ hopping parameter exp. $\sum_{k=-\infty}^{\infty} \left(Z_C(n) \xi^n = \left\langle \frac{\exp\left(\sum_{k=-\infty}^{\infty} W_k \xi^k\right)}{\operatorname{Det} D_W(\mu_0)} \right\rangle \quad Z_G(\mu_0)$

Need to check the overlap problem

Plan of the talk

- 1. Introduction
- ✓ 2. Hopping parameter expansion
 - 3. Numerical setup
 - 4. Canonical partition function Zn
 - 5. Hadronic observables
 - 6. Conclusion
Numerical setup

- \star Iwasaki gauge action
- ★ Clover fermion Nf=2
 - APE stout smeared gauge link $c_{SW} = 1.1$

★ Box sizes $8^3 \times 4 = 12^3 \times 4$

β	T/Tc	К	$m\pi/m ho$
0.9	0.64	0.137	0.8978(55)
1.1	0.67	0.133	0.9038(56)
1.3	0.71	0.138	0.809(12)
1.5	0.81	0.136	0.756(13)
1.7	1	0.129	0.770(13)
1.9	1.7	0.125	0.714(15)
2.1	3.4	0.122	0.836(47)

Numerical setup

 \star Iwasaki gauge action

- ★ Clover fermion Nf=2
 - APE stout smeared gauge link $c_{SW} = 1.1$

★ Box sizes $8^3 \times 4$ $12^3 \times 4$

β	T/Tc	К	$m\pi/m ho$
0.9	0.64	0.137	0.8978(55)
1.1	0.67	0.133	0.9038(56)
1.3	0.71	0.138	0.809(12)
1.5	0.81	0.136	0.756(13)
1.7	1	0.129	0.770(13)
1.9	1.7	0.125	0.714(15)
2.1	3.4	0.122	0.836(47)

Polyakov loop

Polyakov loop

Polyakov loop

Plan of the talk

- 1. Introduction
- ✓ 2. Hopping parameter expansion
- ✓ 3. Numerical setup
 - 4. Canonical partition function Zn
 - 5. Hadronic observables
 - 6. Conclusion

Canonical |Zc(n)|

canonical partition fn. $Z_C(T, n, V) = |Z_C(\beta, n)|e^{i\theta(\beta, n)}$

Get the grand partition function $Z(\mu) = \sum_{n=1}^{\infty} |Z_n|\xi^n$

Get the grand partition function $Z(\mu) = \sum_{n=-\infty}^{\infty} |Z_n| \xi^n$ 1. The pressure $\frac{P}{T^4} = \frac{\log Z(\mu)}{VT^3}$

2. quark number density
$$\langle N \rangle = rac{1}{Z(\mu)} \sum_{n=-\infty}^{\infty} n |Z_n| \xi^n$$

We have the canonical partition function Z_n

3. cumulant of quark number density $\langle N^2 \rangle_c = \left(\xi \frac{\partial}{\partial \xi}\right)^2 \log Z(\xi)$

We have the canonical partition function Z_n

3. cumulant of quark number density $\langle N^2 \rangle_c = \left(\xi \frac{\partial}{\partial \xi}\right)^2 \log Z(\xi)$

Plan of the talk

- I. Introduction
- ✓ 2. Hopping parameter expansion
- ✓ 3. Numerical setup
- 4. Canonical partition function Zn
 - 5. Hadronic observables
 - 6. Conclusion

Hadronic observables

Fugacity expansion of EV of GC observables

$$\langle \hat{O} \rangle_G(\beta,\mu,V) = \frac{\text{Tr}\left[\hat{O}\exp\left(-\beta\left(\hat{H}-\mu\hat{N}\right)\right)\right]}{\text{Tr}\left[\exp\left(-\beta\left(\hat{H}-\mu\hat{N}\right)\right)\right]}$$

Hadronic observables Fugacity expansion of EV of GC observables $\langle \hat{O} \rangle_G(\beta,\mu,V) = \frac{\operatorname{Tr}\left[\hat{O}\exp\left(-\beta\left(\hat{H}-\mu\hat{N}\right)\right)\right]}{\operatorname{Tr}\left[\exp\left(-\beta\left(\hat{H}-\mu\hat{N}\right)\right)\right]}$ Numerator = $\sum \sum \langle E, n | \hat{O}e^{-\beta \hat{H}} | E, n \rangle \xi^{n}$ $n = -\infty$ E

$$\begin{aligned} & \text{Hadronic observables} \\ & \text{Fugacity expansion of EV of GC observables} \\ & \langle \hat{O} \rangle_G(\beta, \mu, V) = \frac{\text{Tr} \left[\hat{O} \exp \left(-\beta \left(\hat{H} - \mu \hat{N} \right) \right) \right]}{\text{Tr} \left[\exp \left(-\beta \left(\hat{H} - \mu \hat{N} \right) \right) \right]} \\ & \text{Numerator} = \sum_{n=-\infty}^{\infty} \sum_{E} \left\langle E, n \left| \hat{O} e^{-\beta \hat{H}} \right| E, n \right\rangle \xi^n \\ & \equiv \sum_{n=-\infty}^{\infty} O_n \xi^n \end{aligned}$$
$$\begin{aligned} & \text{Hadronic observables} \\ & \text{Fugacity expansion of EV of GC observables} \\ & \langle \hat{O} \rangle_G(\beta, \mu, V) = \frac{\text{Tr} \left[\hat{O} \exp \left(-\beta \left(\hat{H} - \mu \hat{N} \right) \right) \right]}{\text{Tr} \left[\exp \left(-\beta \left(\hat{H} - \mu \hat{N} \right) \right) \right]} \\ & \text{Numerator} = \sum_{n=-\infty}^{\infty} \sum_{E} \left\langle E, n \left| \hat{O} e^{-\beta \hat{H}} \right| E, n \right\rangle \xi^n \equiv \sum_{n=-\infty}^{\infty} O_n \xi^n \\ & O_n = \oint \frac{d\xi}{2\pi i} \xi^{-n-1} \left\langle O(D_W(\xi)) \frac{\text{Det} D_W(\xi)}{\text{Det} D_W(\mu_0)} \right\rangle_0 Z_G(\mu_0) \end{aligned}$$

$$\begin{aligned} & \text{Hadronic observables} \\ & \text{Fugacity expansion of EV of GC observables} \\ & \langle \hat{O} \rangle_G(\beta,\mu,V) = \frac{\text{Tr} \left[\hat{O} \exp \left(-\beta \left(\hat{H} - \mu \hat{N} \right) \right) \right]}{\text{Tr} \left[\exp \left(-\beta \left(\hat{H} - \mu \hat{N} \right) \right) \right]} \\ & \text{Numerator} = \sum_{n=-\infty}^{\infty} \sum_{E} \left\langle E, n \left| \hat{O} e^{-\beta \hat{H}} \right| E, n \right\rangle \xi^n \equiv \sum_{n=-\infty}^{\infty} O_n \xi^n \\ & O_n = \oint \frac{d\xi}{2\pi i} \xi^{-n-1} \left\langle O(D_W(\xi)) \frac{\text{Det} D_W(\xi)}{\text{Det} D_W(\mu_0)} \right\rangle_0 Z_G(\mu_0) \\ & \text{function of } \xi \end{aligned}$$

$$\begin{aligned} & \text{Hadronic observables} \\ & \text{Fugacity expansion of EV of GC observables} \\ & \langle \hat{O} \rangle_G(\beta,\mu,V) = \frac{\text{Tr} \left[\hat{O} \exp \left(-\beta \left(\hat{H} - \mu \hat{N} \right) \right) \right]}{\text{Tr} \left[\exp \left(-\beta \left(\hat{H} - \mu \hat{N} \right) \right) \right]} \\ & \text{Numerator} = \sum_{n=-\infty}^{\infty} \sum_{E} \left\langle E, n \left| \hat{O} e^{-\beta \hat{H}} \right| E, n \right\rangle \xi^n \equiv \sum_{n=-\infty}^{\infty} O_n \xi^n \\ & O_n = \oint \frac{d\xi}{2\pi i} \xi^{-n-1} \left\langle O(D_W(\xi)) \frac{\text{Det} D_W(\xi)}{\text{Det} D_W(\mu_0)} \right\rangle_0 Z_G(\mu_0) \\ & \text{function of } \xi \qquad \text{HPE} \end{aligned}$$

$$\begin{aligned} & \text{Hadronic observables} \\ & \text{Fugacity expansion of EV of GC observables} \\ & \langle \hat{O} \rangle_G(\beta,\mu,V) = \frac{\text{Tr} \left[\hat{O} \exp \left(-\beta \left(\hat{H} - \mu \hat{N} \right) \right) \right]}{\text{Tr} \left[\exp \left(-\beta \left(\hat{H} - \mu \hat{N} \right) \right) \right]} \\ & \text{Numerator} = \sum_{n=-\infty}^{\infty} \sum_{E} \left\langle E, n \left| \hat{O}e^{-\beta \hat{H}} \right| E, n \right\rangle \xi^n \equiv \sum_{n=-\infty}^{\infty} O_n \xi^n \\ & O_n = \oint \frac{d\xi}{2\pi i} \xi^{-n-1} \left\langle O(D_W(\xi)) \frac{\text{Det} D_W(\xi)}{\text{Det} D_W(\mu_0)} \right\rangle_0 Z_G(\mu_0) \\ & \text{function of } \xi \qquad \text{HPE} \\ & \bar{\psi}\psi = -\text{tr} \left(\frac{1}{D_W} \right) = -\text{tr} \left(\frac{1}{1 - \kappa Q} \right) = \sum_{m=0}^{\infty} \kappa^m \text{tr} Q^m \end{aligned}$$

Hadronic observables $O_{n} = \sum_{E} \left\langle E, n \left| \hat{O}e^{-\beta \hat{H}} \right| E, n \right\rangle$ $Z_{n} = \sum_{E} \left\langle E, n \left| e^{-\beta \hat{H}} \right| E, n \right\rangle$

Hadronic observables $O_{n} = \sum_{E} \left\langle E, n \left| \hat{O}e^{-\beta \hat{H}} \right| E, n \right\rangle$ $Z_{n} = \sum_{E} \left\langle E, n \left| e^{-\beta \hat{H}} \right| E, n \right\rangle$

VEV in canonical ensamble

Hadronic observables $O_{n} = \sum_{E} \left\langle E, n \left| \hat{O}e^{-\beta \hat{H}} \right| E, n \right\rangle$ $Z_{n} = \sum_{E} \left\langle E, n \left| e^{-\beta \hat{H}} \right| E, n \right\rangle$

 $\langle \hat{O} \rangle_C(\beta, n, V) = \frac{O_n}{Z_n}$

VEV in canonical ensamble

Hadronic observables $O_{n} = \sum_{E} \left\langle E, n \left| \hat{O}e^{-\beta \hat{H}} \right| E, n \right\rangle$ $Z_{n} = \sum_{E} \left\langle E, n \left| e^{-\beta \hat{H}} \right| E, n \right\rangle$ VEV in canonical ensamble

 $\langle \hat{O} \rangle_C(\beta, n, V) = \frac{O_n}{Z_n}$

Hadronic observables $O_n = \sum \left\langle E, n \left| \hat{O} e^{-\beta \hat{H}} \right| E, n \right\rangle$ $Z_n = \sum \left\langle E, n \left| e^{-\beta \hat{H}} \right| E, n \right\rangle$ VEV in canonical ensamble $\langle \hat{O} \rangle_C(\beta, n, V) = \frac{O_n}{Z_n}$ VEV in the REAL $\mu!$ $O(\mu) = \sum O_n \xi^n$ $n = -\infty$ ∞ $Z(\mu) = \sum Z_n \xi^n$ $n \equiv -\infty$

Grand canonical chiral condensate

Grand canonical chiral condensate

No renormalization! No subtraction! Sorry... Low T

Grand canonical chiral condensate

Polyakov loop

Polyakov loop

Polyakov loop

Comparison between $\mu_I/T = 0, 0.5, 1, 2\pi/3$

n_B

Comparison between $\mu_I/T = 0, 0.5, 1, 2\pi/3$

Comparison between $\mu_I/T = 0, 0.5, 1, 2\pi/3$

Comparison between $\mu_I/T = 0, 0.5, 1, 2\pi/3$

Conclusion

Canonical approach is a good choice for finite density QCD.

- Hopping parameter expansion works more than we expected.
- ⋅ We may observe the deconfinement phase transition.
- ⋅ We may observe the chiral restoration.

T/Tc=0.64 0.67 0.71 0.81 1.0 1.7 3.4

$\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} Z_n \xi^n = Z_0 + Z_1 \xi + Z_2 \xi^2 + \cdots$ $+Z_{-1}\xi^{-1}+Z_{-2}\xi^{-2}+\cdots$ $n = -\infty$

n_B

n_B
Where can we apply HPE?

n_B

Where can we apply HPE?

