

Flavor Filtered Fermions

James C. Osborn

with Xiao-Yong Jin

Argonne Leadership Computing Facility

Lattice 2015, Kobe, Japan

Naive fermions

Naive Dirac operator (T_µ covariant shift/parallel transporter)

$$D_N = \frac{1}{2} \gamma_\mu \left(T_\mu - T_\mu^\dagger \right)$$

Naive propagator

$$\frac{1}{D_N + m}$$

1

Has doubler poles at momenta (in the free, massless case)

$$p_{\mu} \in \{0, \pi\}$$

Basic idea

Filter out doublers

Naive propagator
$$rac{1}{D_N+m}$$

$$F\frac{1}{D_N+m}F^{\dagger}$$

1

F: "flavor filter", simple example (free case, momentum space)

$$F = \prod_{\mu} (1 + \cos p_{\mu}) / 2$$
$$F \rightarrow \begin{cases} 1, p = \{0, 0, 0, 0\} \\ 0, \text{any } p_{\mu} = \pi \end{cases}$$

Flavor Filtered Fermions

- Zeros of $F \rightarrow$ poles in $D \rightarrow$ nonlocal D in real space
- Use Ginsparg-Wilson relation to provide way out

$$D^{-1}\gamma_5 + \gamma_5 D^{-1} = 2\rho\gamma_5$$

(massless) Flavor Filtered Fermion

$$D_F^{-1} = \rho + F \frac{1}{D_N} F^{\dagger}$$
$$D_F = \frac{1}{\rho} \left[1 - F \frac{1}{\rho D_N + F^{\dagger} F} F^{\dagger} \right]$$

Mass term

Simplest version

$$D_F^{-1} = \rho + F \frac{1}{D_N + m} F^{\dagger}$$

- Can spin diagonalize inverse \rightarrow 4 staggered solves
- Could use other operators for mass term
 - Give heavier mass to doublers
 - Make operator in denominator more expensive, but improve condition number

$$m \to m G$$

Action

Rewrite determinant

$$|D_F| = \left| \frac{1}{\rho} \left[1 - F \frac{1}{\rho(D_N + m) + F^{\dagger}F} F^{\dagger} \right] \right|$$
$$= \frac{|D_N + m|}{|\rho(D_N + m) + F^{\dagger}F|}$$

• Can view as partial quenching of 15 flavors

− $F^{\dagger}F$ mass term → 15 light, 1 heavy state

Tuning filter

Free case: simplest version

$$F = \prod_{\mu} \left(1 + \cos p_{\mu}\right)/2$$
$$= \prod_{\mu} \left(2 + T_{\mu} + T_{\mu}^{\dagger}\right)/4$$

Interacting case: link renormalization requires tuning filter
 Symmetrize product over permutations

$$F = \operatorname{Sym} \prod_{\mu} \left[(1 - \alpha) + \alpha (T_{\mu} + T_{\mu}^{\dagger})/2 \right]$$

• α =0 : naive fermions α =0.5: untuned filter α >0.5: tuned filter

Tests

- Testing on quenched lattices
- Plaquette action
- Volume: 32³ x 64
- 3 couplings
- Scale from Wilson flow

beta	w0 *	"a" (fm, Nf=2+1) *
6.0	1.766(2)	0.099(1)
6.2	2.442(4)	0.072(1)
6.4	3.273(13)	0.054(1)

* BMW [S. Borsányi, et al., JHEP09(2012)010]

Meson spectrum

- Local mesons:
 - Treat like Wilson/Overlap fermions: insert appropriate gamma
 - Watch oscillating "time doubler" disappear as alpha tuned from naive fermions to filtered case
- Non-local mesons:
 - Gives complete information on suppression of doublers
 - Useful to think in terms of conversion from naive to staggered basis

$$\begin{array}{rccc} \gamma_n & \to & \gamma_n(\gamma_n \otimes \xi_n) \\ T_n & \to & \gamma_n(1 \otimes \xi_n) \\ (-1)^{x+x_n} & \to & 1(\gamma_n \otimes \xi_n) \\ \text{staggered flavor} & & & & \\ \end{array}$$

Local meson correlator

Meson spectrum

- Local mesons:
 - Treat like Wilson/Overlap fermions: insert appropriate gamma
 - Watch oscillating "time doubler" disappear as alpha tuned from naive fermions to optimally filtered case
- Non-local mesons:
 - Gives complete information on suppression of doublers
 - Useful to think in terms of conversion from naive to staggered basis

$$\begin{array}{rccc} \gamma_n & \to & \gamma_n(\gamma_n \otimes \xi_n) \\ T_n & \to & \gamma_n(1 \otimes \xi_n) \\ (-1)^{x+x_n} & \to & 1(\gamma_n \otimes \xi_n) \\ \text{staggered flavor} & & & & \\ \end{array}$$

Non-local meson correlator

- β=6.4, m=0.0069
- Correlator of staggered states: γ_I

$$_F(\gamma_{45}\otimes\xi_{45})$$

Non-local meson correlator

Tuning filter

- Untuned filter (α = 0.5)
 - Suppression ~ 1e-2
- Coarse tuning (α = 0.54)
 - Suppression ~ 3e-4
- Finer tuning (α = 0.5352)
 - Suppression ~ 1e-4
- Stout smearing (2 steps)
 - Reduces need for tuning
 - Untuned suppression (α = 0.5) ~ 3e-4
 - Fine tuning suppression (α = 0.50615) ~ 1e-6
- Still exploring optimal tuning

Fine tuning

Simple filter with one parameter

$$F = \operatorname{Sym} \prod \left[(1 - \alpha) + \alpha (T_{\mu} + T_{\mu}^{\dagger})/2 \right]$$

- Expands into 5 distinct operators, one for each number of hops (0,1,2,3,4)
- Could tune each coefficient separately (only ratio matters, so really 4 parameters to tune)
- Use non-local meson spectrum as guide
- Tuning 1 fairly easy, maybe 2 ok, 4 probably difficult

Dirac operator locality (α =0.5)

- Tail grows with m (effective mass gets lighter); reaches finite limit as m→0
- More local at intermediate distances as 'a' decreased
- Larger distances requires better filtering to reduce contribution

$$D_F = \frac{1}{\rho} \left[1 - F \frac{1}{\rho(D_N + m) + F^{\dagger}F} F^{\dagger} \right]$$

Dirac operator topology

- Eigenvalues of D_F on 8⁴ lattice
- β=5.8, m=0.01
- α=0.54 eigenvalues scaled to roughly match α=0
- 15 eigenvalues move to larger real values, leaving 1 behind
- Effect goes away for smaller quark mass
- Need to check limit a \rightarrow 0 first, then m \rightarrow 0

Alternative filters

Use Wilson term to form filter

$$W = 4 - \frac{1}{2} \sum_{\mu} \left(T_{\mu} + T_{\mu}^{\dagger} \right)$$

- Keep small eigenvalues of W, remove large
- Step function would introduce nonlocality
- Try smooth function
- Polynomial (order 64)

- eta=6.4, m=0.0069 $\gamma_F(\gamma_{45}\otimes\xi_{45})$
- suppression < 10⁻⁶
 (too noisy to measure accurately)

Alternative filters

- Is there an optimal filter (at any cost)?
- What about something like:

$$\sim \frac{D_N}{D_{overlap}}$$

- Ratio preserves physical mode, cancels doublers
- Expensive (no better than just using overlap)
- Maybe a good enough approximation is cheaper?

Flavor (taste) Filtered Staggered?

• Start with staggered, filter out bad tastes

$$F\frac{1}{D_S+m}F^{\dagger}$$

2 flavor (taste)

$$F = (1 - \alpha) + \alpha (1 \otimes \xi_5)$$

- 1 flavor possible, but breaks rotational symmetry (see staggered-wilson literature)
 - Is there a variation that makes this feasible?

Summary

- Constructed new lattice Dirac operator
 - Satisfies Ginsparg-Wilson relation
 - Approximately 1 flavor (needs more study)
 - Depending on choice of filter, can probably satisfy basic locality requirement
 - Signs of emerging topological zero modes
- Cheaper than overlap/DW (in simplest form)
- Comparable expense to Wilson
 - Wilson has effective MG
- Staggered still cheaper
 - Can do Nf=2 flavor filtered staggered

Extra slides

James C. Osborn - Flavor Filtered Fermions - Lattice 2015

James C. Osborn - Flavor Filtered Fermions - Lattice 2015

Δ

James C. Osborn - Flavor Filtered Fermions - Lattice 2015

Δ

James C. Osborn - Flavor Filtered Fermions - Lattice 2015