#### Improving the lattice axial vector current

#### R. Horsley<sup>1</sup>, Y. Nakamura<sup>2</sup>, H. Perlt<sup>3</sup>, P. E. L. Rakow<sup>4</sup>, G. Schierholz<sup>5</sup>, A. Schiller<sup>3</sup>, and J. M. Zanotti<sup>6</sup> QCDSF collaboration

<sup>1</sup>University of Edinburgh, <sup>2</sup>RIKEN, Kobe, <sup>3</sup>Leipzig University, <sup>4</sup>University of Liverpool, <sup>5</sup>DESY, <sup>6</sup>University of Adelaide

Lattice 2015, Kobe, Japan, July 14 - 18, 2015

# Outline

#### Introduction

- 2 Construction of a lattice axial Ward identity
- 3 Perturbative checks and renormalisation
- 4 Nonperturbative check and first application
- 5 Short summary and outlook

#### Introduction

# Introduction 1

 Axial (non-singlet) vector current – important quantity to study hadronic structures as quark masses and meson decay constants

$$A_{\mu}(\mathbf{x}) = \bar{\psi}(\mathbf{x})\gamma_{\mu}\gamma_{5}\psi(\mathbf{x})$$

In the continuum that current satisfies the axial Ward identity

$$\partial_{\mu}A_{\mu}(x) = 2mP(x), \quad P(x) = \bar{\psi}(x)\gamma_5\psi(x)$$

 In most applications with Wilson/clover fermions the local axial vector (plus O(a) improvement) is used Renormalised and improved (local) axial current

$$m{A}_{\mu, ext{loc}}^{\overline{ ext{MS}}} = m{Z}_{m{A}^{ ext{loc}}}(1 + m{b}_{m{A}}m{a}m{m})ig[m{A}_{\mu, ext{loc}} + m{a}m{c}_{m{A}}\partial_{\mu}m{P}ig]^{ ext{lat}}$$

 $A_{\mu,\text{loc}}$  is used to determine e.g. the nucleon axial charge

• To what extent the (continuum) axial Ward identity is fulfilled? How to handle lattice corrections?

A. Schiller (Leipzig)

# Introduction 2

- Proposal: use an one-link axial vector current whose divergence exactly satisfies a lattice Ward identity, involving the pseudoscalar density and a number of irrelevant operators
- Such operators naturally appear in derivation of lattice Ward identities

see e.g. Bochicchio, Maiani, Martinelli, Rossi, Testa NPB262 (1985), also Reisz, Rothe PRD62 (2000), recent Bhattacharya et al., arXiv:1502.07325

Reisz and Rothe performed a proof of the Ward identity in perturbation theory for Wilson like fermions

• We study such an axial Ward identity for clover fermions and check it both perturbatively and nonperturbatively

## **Construction I**

Start from an identity on every configuration (*i*, *j*, *k*, *x* - site positions, no implicit summation)

$$M_{jx}^{-1} \gamma_5 \,\delta_{xi} + \delta_{jx} \,\gamma_5 \,M_{xi}^{-1} = \sum_k \left( M_{jx}^{-1} \,\gamma_5 \,M_{xl} M_{ki}^{-1} + M_{jk}^{-1} M_{kx} \,\gamma_5 \,M_{xi}^{-1} \right)$$

• Split the clover fermion matrix M

$$M_{ij} = D_{ij} + W_{ij} + C_{ij} + m_B \delta_{ij} I$$

 $D \sim \gamma_{\mu}$ , *W* Wilson term,  $C \sim c_{sw}$  clover term bare mass  $m_B$  vanishing for  $\kappa = 1/8$ 

$$am_B = rac{1}{2\kappa} - 4$$
 in MC,  $am_B = am - rac{C_F g^2}{16\pi^2} \Sigma_0$  in 1-loop LPT

### Construction II

• Averaging that expression over configurations, we get

$$S_{jx}\gamma_5\delta_{xi}+\delta_{jx}\gamma_5S_{xi}=-G_{jxi}[\partial A]+2m_BG_{jxi}[P]+2G_{jxi}[O_C]+G_{jxi}[O_W]$$

 $S_{jx}$  fermion propagator (2-point function)  $G_{jxi}[O]$  fermion-line connected 3-point function of operator O

$$a\partial A = \sum_{\mu} [A_{\mu}(x) - A_{\mu}(x - a\hat{\mu})]$$

 $\begin{aligned} A_{\mu}(x) &= \frac{1}{2} \left[ \bar{\psi}_{x} \gamma_{\mu} \gamma_{5} U_{\mu}(x) \psi_{x+a\hat{\mu}} + \bar{\psi}_{x+a\hat{\mu}} \gamma_{\mu} \gamma_{5} U_{\mu}^{\dagger}(x) \psi_{x} \right] \\ P &= \bar{\psi}_{x} \gamma_{5} \psi_{x} , \quad aO_{C} = \bar{\psi}_{x} \gamma_{5} C_{xx} \psi_{x} \\ aO_{W} &= 8P - \frac{1}{2} \sum_{\mu} \left[ \bar{\psi}_{x} \gamma_{5} U_{\mu}(x) \psi_{x+a\hat{\mu}} + \bar{\psi}_{x+a\hat{\mu}} \gamma_{5} U_{\mu}^{\dagger}(x) \psi_{x} + (x \to x - a\hat{\mu}) \right] \end{aligned}$ 

# **Construction III**

#### Rearrange

 $G_{jxi}[\partial A] = 2m_B G_{jxi}[P] - S_{jx}\gamma_5 \delta_{xi} - \delta_{jx}\gamma_5 S_{xi} + 2G_{jxi}[O_C] + G_{jxi}[O_W]$ 

axial Ward identity (WI) contact term to make WI hold offshell tree level Wilson term: delta function in position space to cancel lattice artefacts in propagators in interaction case mixing of  $O_W$  and  $O_C$  with lower dimensional operators

Forward case

$$G_{jxi}[\partial A] = 0$$

we are left with an identity linking the propagators to the 3-point functions of P,  $O_W$ ,  $O_C$  could be used to find  $\kappa_c$  measuring the 3-point functions at different  $\kappa$  on-shell

# Perturbative checks

- Use of Wilson gauge action and clover fermions with stout smeared U in A<sub>μ</sub> and O<sub>W</sub>, unsmeared U in O<sub>C</sub>
- Check of identity in 1-loop LPT for amputated Green functions in momentum space [q = p<sub>2</sub> - p<sub>1</sub>, Λ<sub>O</sub> = Λ<sub>O</sub>(p<sub>2</sub>, p<sub>1</sub>)]

$$\gamma_5 S^{-1}(p_1) + S^{-1}(p_2)\gamma_5 = -\Lambda_{\partial A} + 2m_B\Lambda_P + 2\Lambda_C + \Lambda_W$$

Feynman rules for all operators
 Forward case: 1-loop up to O(a<sup>2</sup>) for arbitrary masses (check against available results of Cyprus group, technique differs)
 Non-forward case 1-loop up to O(am)

# **Typical diagrams**



Figure: Typical diagrams

Nonvanishing contributions  $A, \partial A, O_W$ : vertex, sails, tadpole, P: vertex,  $O_C$ : sails results are functions of  $ap_1, ap_2, am, \alpha, c_{sw}, \omega$ 

### Renormalisation factors: one-link $Z_A$

- κ<sub>c</sub> derivation from mass independent contributions of the WI (valid both forward and nonforward)
- Wave function and mass renormalisation

$$S^{\overline{\mathrm{MS}}}(p, m^{\overline{\mathrm{MS}}}) = Z_2^{-1} S^{\mathrm{lat}}(p, Z_m m)$$

Forward/nonforward amputated Green's functions

$$\Lambda_O^{\overline{\mathrm{MS}}}(p_2,p_1) = Z_O \Lambda_O^{\mathrm{lat}}(p_2,p_1), \quad O = (P, A, \partial A)$$

Z<sub>P</sub> checked against Cyprus group

• New:  $Z_{A} = Z_{\partial A} = 1 + \frac{g^{2}C_{F}}{16\pi^{2}} \Big[ -8.66279 + 0.9116267c_{sw} + 2.00070c_{sw}^{2} + 85.9927\omega - 4.77316c_{sw}\omega - 282.301\omega^{2} \Big]$ 

• Naive WI not fulfilled:  $Z_m Z_P - Z_A = O(g^2)$ 

#### Renormalisation invariance – forward identity

Improved identity in forward case
 I.h.s.: Propagators depends only on Z<sub>2</sub>

$$(\gamma_5 S^{-1} + S^{-1} \gamma_5)^{\overline{\text{MS}}} = Z_2 (\gamma_5 S^{-1} + S^{-1} \gamma_5)^{\text{lat}}$$

r.h.s.: The combined operator

$$2m_Bar{P}\equiv 2m_BP+2O_C+O_W$$

is renormalisation invariant

$$(2m\Lambda_P)^{\overline{\mathrm{MS}}} = Z_2(2m_B\Lambda_{\bar{P}})^{\mathrm{lat}}$$

 The local operator 2mP would need a finite renormalisation Z<sub>m</sub>Z<sub>P</sub> Operator with m<sub>B</sub> and "irrelevant" terms needs neither additive nor multiplicative renormalisation

A. Schiller (Leipzig)

Improving the lattice axial vector current

#### Renormalisation invariance - nonforward case

 The nonforward case contains the operator ∂A with the one-link axial vector

LPT result

$$(-\partial A + 2mP)^{\overline{\mathrm{MS}}} = (-\partial A + 2m_B\bar{P})^{\mathrm{lat}}$$

 $\Rightarrow$  the constructed axial WI is renormalisation invariant

• Form of the renormalisation mixing matrix

$$\begin{pmatrix} -\partial A \\ 2mP \end{pmatrix}^{\overline{\mathrm{MS}}} = \begin{pmatrix} Z_{A} & 0 \\ 1 - Z_{A} & 1 \end{pmatrix} \begin{pmatrix} -\partial A \\ 2m_{B}\bar{P} \end{pmatrix}^{\mathrm{latt}}$$

Lattice axial Ward identity passed all tests in 1-loop LPT

#### Lattice setup

- Gluon action: tree-level Symanzik improved Fermion action:  $n_f = 2 + 1$  Wilson fermions with clover term analytic stout smeared links in the Dirac kinetic and mass terms, no smearing in the clover term  $32^3 \times 64$ ,  $c_{sw} = 2.65$ ,  $\omega = 0.1$ ,  $\beta = 5.5$  [a = 0.074(2) fm]
- (κ<sub>I</sub>, κ<sub>s</sub>) choices: Flavor symmetric point and along a line of constant singlet quark mass corresponding to pion masses 465, 360, 310 MeV
- Measure two point correlation functions  $C_{\pi O}(t)$  as function of "time" *t*

source: smeared pion at rest

sink: O - smeared pion or operators at t

no contribution from "contact" terms

#### First results – Correlators at $m_{\pi} = 465 \text{ MeV}$



Figure: Correlation functions: (I) individual, (r) differences

#### First results – Ward identity

 Fit separately the correlators to get the amplitudes Combine amplitudes at bootstrap level to obtain bootstrap errors

$$\langle \Sigma \rangle = \langle -\partial A + 2m_B P + 2O_C + O_W \rangle$$



A. Schiller (Leipzig)

# First results – (unrenormalised) pion decay constant

•  $\langle \partial A \rangle = (af_{\pi}) (am_{\pi})^2$  (statistics will be significantly improved)



Figure: Unrenormalised pion decay constant as function of  $m_{\pi}$ 

•  $Z_{A^{\text{loc}}} = 0.873$  (PR D91) Hope:  $Z_A$  for the one-link current is close to one LPT (Wilson gauge action,  $g^2 = 1, c_{sw} = 1, \omega = 0.1$ )  $Z_A = 0.9962$ 

## Short summary and outlook

 We have proposed to use an one-link axial vector present in a lattice axial Ward identity

 $G_{jxi}[\partial A] = 2m_B G_{jxi}[P] + S_{jx} \gamma_5 \delta_{xi} + \delta_{jx} \gamma_5 S_{xi} - 2G_{jxi}[O_C] - G_{jxi}[O_W]$ 

- Check of WI in 1-loop LPT [partly up to O(a<sup>2</sup>)]
  Z factor issues and way of realisation of renormalisation invariance are discussed
- Nonperturbative check using correlators of pion at rest with the operators in the WI
  - $f_{\pi}$  determination started

#### Outlook

Check the axial WI at still lighter pion masses and other  $\beta$ 's Determine quantities as  $f_{\pi}$  with more statistics Find  $Z_A$  nonperturbatively using the FH approach Alternative  $\kappa_c$  determination

Study problems with nonzero momentum transfer (formfactors)

A. Schiller (Leipzig)