LATTICE INPUT ON THE τ V_{us} PUZZLE

with R. J. Hudspith, R. Lewis, C. Wolfe, J. Zanotti

LATTICE 2015, Kobe, July 15/15

OUTLINE

- Background/context: V_{us} from inclusive FB τ FESRs
- The "conventional" implementation and the $> 3\sigma$ low $|V_{us}|$ puzzle
- OPE issues and investigations using lattice data
- A new implementation strategy (and $|V_{us}|$ results)

CONTEXT/BACKGROUND I

- Object of interest: the us CKM matrix element V_{us}
 - * From 3-family unitarity: $|V_{ud}|$ from $0^+ \rightarrow 0^+$ nuclear β decays (Hardy-Towner'14) $\Rightarrow |V_{us}| = 0.2258(9)(?)$

* From
$$K_{\ell 3}$$
: lattice $f_{+}(0) \Rightarrow$
 $|V_{us}| = 0.2233(5)_{exp}(9)_{latt}$ (RBC/UKQCD 2015)
 $|V_{us}| = 0.2238(5)_{exp}(9)_{latt}$ (FNAL/MILC 2012)

* From $\Gamma[K_{\mu 2}]/\Gamma[\pi_{\mu 2}]$: FLAG $n_f = 2 + 1 + 1 f_K/f_{\pi}$ input $\Rightarrow |V_{us}| = 0.2250(4)_{exp}(9)_{latt}$

- C.f. "conventional" FB τ kinematic-weight FESR determination, inclusive *ud*, *us* BF input [Gamiz et al.]
 - * With HFAG input: $|V_{us}| = 0.2176 (19)_{exp} (10??)_{th}$ (Passemar, CKM14 τ $|V_{us}|$ summary)
 - * 3.4 σ low c.f. 3-family unitarity expectations
 - * Interesting **if real**, but theory systematics?

• This talk:

- * Lattice data to clarify continuum OPE input/treatment issues, quantify OPE errors
- * Re-visit implementation of FB FESR approach with lattice lessons in mind

CONTEXT/BACKGROUND II

- Basic theoretical tool: FESRs (Cauchy's Thm)
- For any s_0 , analytic w(s), kinematic-singularity-free Π :

$$\int_{s_{th}}^{s_0} ds \, w(s) \rho(s) = \frac{-1}{2\pi i} \oint_{|s|=s_0} ds \, w(s) \Pi(s)$$

- Inclusive FB $\tau |V_{us}|$ determination: From FESRs for V,A current 2-pt function polarizations $\Pi_{ud-us;V+A}^{(J)}(Q^2)$
 - * Experimental spectral input: Scaled spectral functions $|V_{ij}|^2 \rho_{ij;V/A}^{(J)}(s)$ from $dR_{ij;V/A}/ds$, with $R_{ij;V/A} \equiv \frac{\Gamma[\tau \rightarrow \nu_{\tau} \text{ hadrons}_{ij;V/A}(\gamma)]}{\Gamma[\tau \rightarrow \nu_{\tau} e^{-} \overline{\nu}_{e}(\gamma)]}$ (+ small $us \ J = 0$ subtraction) [SM "kinematic weight" w_{τ}]
 - * $R^w_{ij;V/A}(s_0)$: Re-weighted $R_{ij;V/A}$ analogue, integrated to variable upper endpoint s_0 in spectrum

$$R^{w}_{ij;V/A}(s_0) \sim \int_{th}^{s_0} ds \, \frac{dR_{ij;V/A}}{ds} \frac{w(s/s_0)}{w_{\tau}(s/m_{\tau}^2)}$$

* FESR for
$$\delta R^{w} \equiv \frac{R_{ud;V+A}^{w}}{|V_{ud}|^{2}} - \frac{R_{us;V+A}^{w}}{|V_{us}|^{2}}$$
 yields
$$|V_{us}| = \sqrt{\frac{R_{us;V+A}^{w}(s_{0})}{\frac{R_{ud;V+A}^{w}(s_{0})}{|V_{ud}|^{2}} - [\delta R^{w}(s_{0})]^{OPE}}}$$

valid for arbitrary analytic w(y), $s_0 \leq m_{\tau}^2$

- * "Self-consistency tests":
 - $\circ |V_{us}|$ independent of s_0 , w (tests control, understanding of OPE, experimental systematics)
 - E.g., integrated D = 2k + 2 OPE $\sim 1/s_0^k$: errors in higher D treatment $\leftrightarrow s_0$ -instability

• Variable- s_0 FESRs below for $\Delta \Pi_{\tau} \equiv \Pi_{ud-us;V+A}^{(0+1)}$

- The conventional FB τ FESR implementation:
 - * $w = w_{\tau}$, $s_0 = m_{\tau}^2 \Rightarrow R_{ud,us;V+A}$ from inclusive ud, us BFs
 - * $[\delta R^w(s_0)]^{OPE}$ $(D \ge 2)$: for $w = w_{\tau}$, $s_0 = m_{\tau}^2$, conventional estimates a few % of individual $R_{ud,us;V+A}$ \Rightarrow modest OPE accuracy enough for precision $|V_{us}|$

*
$$w_{\tau}$$
 degree 3 \Rightarrow OPE contributions up to $D = 8$

* OPE: D = 2, D = 4 known, D = 6 OPE estimated with "VSA" (very small), D = 8 neglected

- Conventional implementation: self-consistency tests
 - * Variable $s_0 \leq m_{\tau}^2$, s_0 -stability check
 - * Compare $|V_{us}|$ from \hat{w} , $w_{\tau} \Delta \Pi_{\tau}$ FESRs for weights $w_{\tau}(y) = 1 - 3y^2 + 2y^3$, $\hat{w}(y) = 1 - 3y + 3y^2 - y^3$ $(y = s/s_0)$
 - \circ D = 6, D = 8 for \hat{w} are -1, $-1/2 \times$ those for w_{τ}
 - D > 4 assumptions OK for $w_{\tau} \Rightarrow$ also for $\hat{w} \Rightarrow$ $|V_{us}|$ agreement
 - If NOT, opposite-sign s_0 -instabilities for w_{τ} , \hat{w} , decreasing with s_0 for both

It's pretty clear which of the two scenarios is actually realized

• Candidate self-consistency problem sources:

* Experiment: The less-well-known us distribution

* Theory: Conventional D > 4 assumptions (w_{τ} , \hat{w} comparison); slow D = 2 OPE convergence

• The D = 2, 4 series and slow D = 2 convergence

$$\begin{split} \left[\Delta \Pi_{\tau}(Q^2) \right]_{D=2}^{OPE} &= \frac{3}{2\pi^2} \frac{\bar{m}_s^2}{Q^2} \left[1 + 2.333\bar{a} + 19.933\bar{a}^2 \right. \\ &+ 208.746\bar{a}^3 + \cdots \right] \\ \left[\Delta \Pi_{\tau}(Q^2) \right]_{D=4}^{OPE} &= \frac{\left[\langle m_\ell \bar{\ell} \ell \rangle - \langle m_s \bar{s} s \rangle \right]}{Q^4} \left(2 - 2\bar{a} - \frac{26}{3} \bar{a}^2 \right) \\ \text{with running } \overline{MS} \text{ quantities } \bar{a} &= \frac{\alpha_s(Q^2)}{\pi}, \ \bar{m}_s = m_s(Q^2) \end{split}$$

- * $\bar{a}(m_{\tau}^2) > 0.10 \Rightarrow$ slowly converging D = 2 series at ALL scales accessible in τ decay
- * Slow D = 2 convergence a potential issue for conventional D = 2 truncation error estimates

LATTICE RE D = 2 SERIES, D > 4 OPE ISSUES

- OPE c.f. RBC/UKQCD lattice $\Delta \Pi_{\tau}(Q^2)$
 - * Here: lightest m_{π} , fine $(1/a = 2.38 \ GeV) \ 32^3 \times 64$ 2 + 1 ensemble $(m_{\pi} \sim 300 \ MeV, \ m_{\pi}L \sim 4.1)$
 - * Cylinder cut for continuum correlator behavior [See Randy Lewis' α_s talk]
 - * Large Q^2 : D = 2 + 4 OPE exploration; lower Q^2 : re possible non-negligible D > 4 at τ decay scales
 - * Fixed- or local-scale D = 2? [c.f. "FOPT" vs "CIPT" issue for FESRs]

- Higher Q^2 : best (excellent) lattice vs D = 2 + 4 OPE match for 3-loop-truncated, fixed-scale D = 2
- Fixed scale suggests FOPT for FESR D = 2

• Onset of D>4 contributions below $\sim 4~GeV^2$

• Standard D = 2, D = 4 error estimates conservative, despite very slow convergence of the D = 2 series

A NEW IMPLEMENTATION STRATEGY BASED ON LATTICE/CONTINUUM LESSONS

- No assumptions re D > 4; include contributions and fit effective condensates C_D as part of analysis
- 3-loop-truncated FOPT for D = 2 contribution; standard error estimates for D = 2 + 4
- Use range of s_0 and fit both $|V_{us}|$, C_D
- Fits simplest for $w(y) = w_N(y) = 1 \frac{y}{N-1} + \frac{y^N}{N-1}$ (C_{2N+2} , $|V_{us}|$ as only fit parameters)
- Self-consistency check: $|V_{us}|$ from different w_N

OPE, SPECTRAL INPUT

- PDG, FLAG, HPQCD input for D = 2,4 OPE
- $ud \lor +A$ spectral data from ALEPH 2013
- $us \vee + A$ spectral data from sum over exclusive modes [> 90% of B_{us}^{TOT} from $K_{\ell 2}$, Belle, BaBar $K\pi$, $K\pi\pi$, 3Kresults; residual: 1999 ALEPH]
- Here, for brevity, with $K\pi$ normalization including preliminary BaBar $B[\tau \to K^- \pi^0 \nu_{\tau}]$ update

RESULTS OF THE NEW ANALYSES

- Fitted $|V_{us}|$ (as expected) between w_{τ} and \hat{w} conventional implementation results
- Fitted C_D show FB cancellation in comparison to fitted $ud \vee + A$ analogues (qualitative self-consistency test)
- Excellent stability of both $|V_{us}|$, C_{2N+2} , wrt variation of fit window size; excellent agreement of central $|V_{us}|$ from different w_N
- Results using preliminary $K\pi$ BF update

		favored by lattice
	$ V_{us} $	$ V_{us} $
Weight	CIPT+corr $D = 2$	FOPT $D = 2$
w2	0.22271(228)	0.22252(228)
w_{3}	0.22271(228)	0.22282(228)
w_{4}	0.22271(229)	0.22296(229)

Error budget, 3-loop-truncated FOPT D = 2 fits

	$\delta V_{us} $	$\delta V_{us} $	$\delta V_{us} $
Source	$(w_2 \text{ FESR})$	$(w_3 \text{ FESR})$	$(w_4 \text{ FESR})$
$\delta lpha_s$	0.00001	0.00004	0.00004
δm_s (2 GeV)	0.00017	0.00019	0.00019
$\delta \langle m_s \bar{s} s angle$	0.00035	0.00035	0.00035 ←
$\delta(long \ corr)$	0.00009	0.00009	0.00009
ud exp	0.00027	0.00028	0.00028
us exp	0.00226	0.00227	0.00227 <

Fit quality: s_0 -stability for conventional implementation, except with fitted C_{2N+2}

SUMMARY/CONCLUSIONS

- Continuum, lattice \Rightarrow conventional D > 4 assumptions unreliable, must fit D > 4 effective condensates
- Fitting D > 4 resolves s_0 -, w(y)-dependence problems
- Lattice \Rightarrow 3-loop-truncated FOPT for D = 2 series
- Lattice \Rightarrow D = 2 + 4 OPE error estimate conservative
- $|V_{us}|$ errors then strongly dominated by us experimental uncertainties, subject to experimental improvement

- D > 4 contributions, when included, raise $|V_{us}|$ by ~ 0.0020, reduce previous discrepancy
- New preliminary $K^-\pi^0$ BF normalization, 3-weight combined fit result $|V_{us}| = 0.2228(23)_{exp}(5)_{th}$ in agreement with other determinations (especially $K_{\ell 3}$)

(c.f. 0.2200(23)_{exp}(5)_{th} with 2014 HFAG $B[K^{-}\pi^{0}]$)

- Theory error ~ 0.0005 c.f. 0.0009 for $K_{\ell 3}$, $\Gamma[K_{\mu 2}]/\Gamma[\pi_{\mu 2}]$ (lattice crucial here) \Rightarrow method competitive once usexperimental errors sufficiently improved
- \bullet Old τ $|V_{us}|$ puzzle almost certainly resolved

BACKUP SLIDES

• Spectral functions from hadronic τ decay distributions: With $R_{ij;V/A} \equiv \frac{\Gamma[\tau \rightarrow \nu_{\tau} \text{ hadrons}_{ij;V/A}(\gamma)]}{\Gamma[\tau^{-} \rightarrow \nu_{\tau} e^{-} \overline{\nu}_{e}(\gamma)]}$

$$\frac{dR_{V/A;ij}}{ds} = \frac{12\pi^2 |V_{ij}|^2 S_{EW}}{m_\tau^2} \left[w_\tau \left(\frac{s}{m_\tau^2} \right) \rho_{ij;V/A}^{(0+1)}(s) + w_L \left(\frac{s}{m_\tau^2} \right) \rho_{ij;V/A}^{(0)}(s) \right]$$
$$w_\tau(y) = (1-y)^2 (1+2y), w_L(y) = -2y(1-y)^2$$

More on the D > 6 VSA guesstimate

- VSA VERY crude: sizable (e.g. $\sim 4-5$), channeldependent violation in *ud* V, A channels
- Crudeness ⇒ double very close cancellation (in individual ud, us V+A sums, and in FB ud – us difference) dangerous to rely on
- Integrated D > 4 << than integrated D = 2 for w_τ (absence of O(y) term) but comparable for other w(y)
 ⇒ small doubly-cancelled D = 6 VSA estimate again suspect

MORE ON THE us DATA

- K pole via $f_K |V_{us}|$ from $K_{\ell 2}$
- Rather precise unit-normalized $K^-\pi^0$, $\bar{K}^0\pi^-$, $K^-\pi^+\pi^-$, $\bar{K}^0\pi^-\pi^0$, 3K distributions from Belle, BaBar (main uncertainties from BFs)
- K, B-factory modes over 90% of B_{us}^{TOT}
- Residual *us* exclusive mode contributions from 1999 ALEPH data, covariances

Alternative $K\pi$ BF normalizations

- Existing HFAG $B[(K^{-}\pi^{0} + \bar{K}^{0}\pi^{-})\nu_{\tau}] = 0.0126$
- Existing $B[K^-\pi^0\nu_{\tau}] = 0.00431(15)$ value \rightarrow preliminary BaBar (Adametz thesis) result 0.00500(15) yields $B[(K^-\pi^0 + \bar{K}^0\pi^-)\nu_{\tau}] = 0.0133$
- Central $B[(K^-\pi^0 + \bar{K}^0\pi^-)\nu_{\tau}]$ from $K_{\ell 3}$, dispersion rel'n expectations [ACLP13] also 0.0133
- 0.07% difference "small" but represents \sim 2.4% of B_{us}^{TOT} , hence \sim 1.2% increase in $|V_{us}|$

Results for $|V_{us}|$ for current $K\pi$ BFs:

	$ V_{us} $	$ V_{us} $
Weight	CIPT+corr D = 2	FOPT $D = 2$
	0.21985(230)	0.21966(230)
w_{3}	0.21985(231)	0.21966(231)
w_{4}	0.21985(231)	0.22009(231)

Error budget, existing $K\pi$ BFs

	$\delta V_{us} $	$\delta V_{us} $	$\delta V_{us} $
Source	$(w_2 \text{ FESR})$	$(w_3 \text{ FESR})$	$(w_4 \text{ FESR})$
$\delta lpha_s$	0.00001	0.00003	0.00005
δm_s (2 GeV)	0.00017	0.00018	0.00020
$\delta \langle m_s \bar{s} s angle$	0.00034	0.00034	0.00034
$\delta(long \ corr)$	0.00009	0.00009	0.00009
ud exp	0.00027	0.00027	0.00027
us exp	0.00229	0.00229	0.00230

Stability of $|V_{us}|$ with fitted C_{2N+2} input, existing $K\pi$ BF normalization

FUTURE PROSPECTS/COMMENTS

- Errors dominated by *us* spectral integral errors
- For exclusive us modes measured by Belle, BaBar, these errors dominated by BF normalization uncertainties ⇒ improvements in BF errors highly desirable
- Updated ud V and A distributions from Belle and BaBar also most welcome, including 4π (where unexpectedly large CVC violations c.f. $e^+e^- \rightarrow 4\pi$ still not resolved)
- Full inclusive *us* distribution from B-factories (or Belle II) also a highly desirable long-term goal