QCD spectroscopy and quark mass renormalisation in external magnetic fields with Wilson fermions

QCD spectroscopy and quark mass renormalisation in external magnetic fields with Wilson fermions

Bastian Brandt

University of Regensburg

In collaboration with Gunnar Bali, Gergely Endrödi and Benjamin Glaessle

24.06.2014

Contents

- 1. Why spectroscopy in external magnetic fields?
- 2. Quenched spectrum with Wilson fermions
- Additive quark mass renormalisation in QCD+QED External magnetic fields – the free case The standard method and its problems Ward identities for QCD+QED
- 4. A first test of quark mass tuning for external magnetic fields
- 5. Summary and Perspectives

QCD spectroscopy and quark mass renormalisation in external magnetic fields with Wilson fermions Why spectroscopy in external magnetic fields?

1. Why spectroscopy in external magnetic fields?

QCD spectroscopy and quark mass renormalisation in external magnetic fields with Wilson fermions Why spectroscopy in external magnetic fields?

External magnetic fields: Physical relevance

- In the past few years: Investigation of the effect of QED fields on QCD observables has attracted a lot of attention.
 - Motivation for QCD+QED:
 - For high precision observables (e.g. spectrum) QED effects become visible with current accuracy.
 - Strong external magnetic fields appear in:
 - Non-central heavy lon collisions (~ 10¹⁸ G → 0.02 GeV²) [Kharzeev, PLB 633 (2006); Kharzeev, McLerran, Warringa, NPA 803 (2008);
 - Skokov, Illarionov, Toneev, IJMPA 24 (2009)]
 - $\blacktriangleright\,$ Surface and interior of magnetars ($\sim 10^{15}$ to $\sim 10^{20}$ G $\rightarrow \lesssim \!\! 1.96$ GeV²)

[Review: Ferrer, de la Incera, LNP 871 (2013)]

- The early universe (~ 10⁹ G at T_C^{QCD}) (due to gradients in the VEV of the Higgs field after phase transitions) [Vachaspati, PLB 265 (1991); Enqvist, Olesen, PLB 319 (1993)]
- ⇒ Understanding the properties of QCD in external magnetic fields is important!

QCD spectroscopy and quark mass renormalisation in external magnetic fields with Wilson fermions Why spectroscopy in external magnetic fields?

External magnetic fields: Physical relevance

Effects of external fields:

Influence the phase diagram of QCD!

[Review: Andersen, Naylor, Tranberg, arXiv:1411.7176]

- Affect the spectrum (masses) of the theory!
 - Field has a direct influence on masses of charged particles.
 - Uncharged particles influenced indirectly. (subleading effect?)

For many applications both effects are of relevance!

Phase diagram is by now rather well understood from LQCD!

[e.g. Bali, et al, JHEP 1202 (2012); Endrödi, arXiv:1504.08280]

For the spectrum there are only some first quenched studies.

[SU(2): Braguta, et al, PLB 718 (2012); Luschevskaya, Larina, NPB 884 (2014)]

[SU(3): Hidaka, Yamamoto, PRD 87 (2013); Luschevskaya, Teryaev, Kotchetkov, arXiv:1411.4284]

Charged vector meson condensation: [Muller, Schramm, Schramm, MPLA 07 (1992)] Naively: $m_{\rho}^{\pm}(\mathbf{B}_{cr}) = 0$ for $\mu > 0$ (μ : proj. of magn. moment on **B**)

2. Quenched spectrum with Wilson fermions

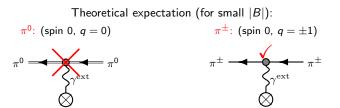
Lattice setup - External field

• Introduce external field by minimal coupling to gauge potential A_{μ} :

$$D_{\mu} = D_{\mu}^{
m QCD} + i q_f A_{\mu}$$
 q_f : charge of flavour f

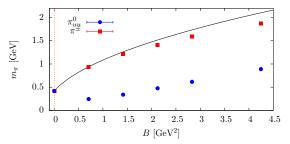
Choice:

$$\mathbf{B} = B\hat{z} \iff A_0(x) = A_3(x) = 0, \ A_1(x) = -(B/2)x_2, \ A_2(x) = (B/2)x_1$$

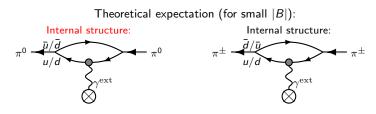

• On the lattice: Replace gluonic links $U^{\rm G}_{\mu}(x)$ in Dirac matrix M by:

 $U_{\mu}(x) = U_{\mu}^{G}(x)u_{\mu}(x) \in U(3)$ $u_{\mu}(x) = \exp(iaq_{f}A_{\mu}(x)/2)$: EM links

Magnetic field quantisation via $qB L_x L_y = 2\pi N_b$.

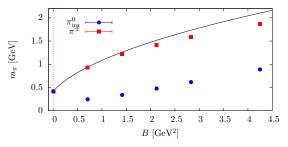

- Fermion matrix *M* becomes flavour-dependent! \Rightarrow $N_f = 1 + 1$ -setup
- Here: Use (for moment unimproved) Wilson fermions!
- Quenched test setup: (Neglect sea quark effects!)
 - 48×16^3 Lattice with $a \approx 0.09$ fm.
 - \sim 200 meas (1 inversion per config)
 - Solver: DFL-SAP-GCR ([Lüscher, CPC 156 (2004); JHEP 0707 (2007)])
 - ▶ Focus on $m_{\pi} \approx 400$ MeV (several masses to check dependence)

Results for the spectrum – Pions



 \Rightarrow Not affected directly!

 \Rightarrow Energies: $E^2 = m_\pi^2 + (1+2n)|qB|$



Results for the spectrum – Pions

Results for the spectrum – ρ -mesons $s_z = 0$

External photons enable decays:

$$ho_{s_z=0}^{0,\pm} o \gamma \pi^{0,\pm}$$

⇒ Pion states appear in $\langle V_3 V_3 \rangle$ correlation functions.

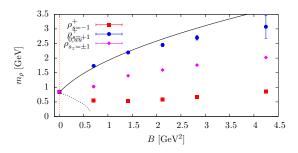
Groundstate: Pion state!

Possible method to solve the problem:

- GEVP via a correlation matrix in some operator basis.
- Problem: Multi-π states with E < m_ρ. (especially for small m_π)
 - \Rightarrow Needs large correlation matrices.

Results for the spectrum – ρ -mesons $s_z = \pm 1$

- $\rho_{s_z=\pm 1}^0$: (spin 1, q=0)
 - ⇒ Only indirect effects!


•
$$\rho_{s_z=\pm 1}^{\pm}$$
: (spin 1, $q=\pm 1$)

 \Rightarrow Direct coupling to **B**.

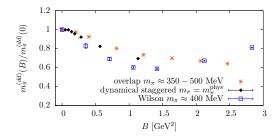
Energies: $E^2 = m_{\rho}^2 + (1 + 2n + g\mu)|qB|$ $\mu = \pm 1$, g: g-factor of the particle

 ρ -meson condensation:

- E = 0 when $\mu = -1$ and $eB = m_{\rho}^2$.
- System becomes superconducting!
 [Chernodub, PRL 106 (2011)]
- QCD inequalities: Condensation cannot occur!
 [Hidaka, Yamamoto, PRD 87 (2013)]

Comparison of π^0 masses to other results

 π^0 shows a (relatively) small dependence on the magnetic field. But: Behaviour is non-monotonous!


Consistent with other results from Wilson fermions.

[Hidaka, Yamamoto, PRD 87 (2013)]

- Overlap results look different. [Luschevskaya, Teryaev, Kotchetkov, arXiv:1411.4284]
- Staggered results?

Is this a physical effect?

(Also: What about disconnected contributions?)

3. Additive quark mass renormalisation in QCD+QED

What we ignored up to now!

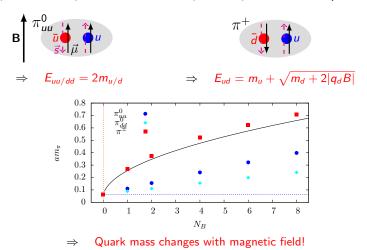
Appears to be a discrepancy between overlap and Wilson results! (However: Many systematic effects with unknown impact!) One effect which has been ignored in Wilson studies:

Change of κ_c with **B**!

I.e.: Keeping κ fixed leads not to a line of constant physics!

- κ_c is an artefact due to the introduction of the Wilson term. \Rightarrow A change of the operator means a change in κ_c .
- The change in κ_c is significant for QCD+QED.

```
[e.g. Borsanyi, et al Science 347 (2015)]
```

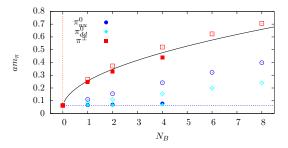

What happens for external magnetic fields?

First: Check the effect in the free case.

- Easiest way: Look at pole in the quark propagator.
- Problem: Magnetic field spoils applicability of Fourier transformation!

Free case

Alternative: Look at the energy levels of free "pions"! (in practice: two quarks in a box with imposed π -quantum numbers)


Free case – adjusted κ

Here: Change in the quark masses can only be due to a change in κ_c !

 \Rightarrow Recompute κ_c with condition

$$E_{uu/dd}(\mathbf{B}) \sim \frac{1}{\kappa} - \frac{1}{\kappa_{c,u/d}(\mathbf{B})} = \mathrm{const}$$

We find: $\Delta m_{c,f} = \frac{6\pi}{N_x N_y} q_f N_b$ (free case)

With retuned masses: $\kappa_f
ightarrow \left(\kappa^{-1} - \Delta m_{c,f}
ight)^{-1}$

Tuning of quark masses in the interacting theory

- Standard method for QCD+QED: Adjust $\bar{m}_{u/d}$ so that pseudo-pions $(\pi^0_{uu/dd})$ masses remain constant.
- Advantage: No renormalisation needed.
- ▶ Problem: Disconnected diagrams present. ⇒ Typically neglected!

Application to external magnetic fields?

- Method can be applied when we know the physical mass in this situation! But: Masses will change with the magnetic field (objects of interest)!
- $\blacktriangleright \Rightarrow Method cannot be applied!$

Alternatives to determine κ_c :

- Use fact: $m_{\pi^0}(\mathbf{B}) \to 0$ for $m_{u/d} \to 0$.
- Extract m_f from Ward identities (WIs), determine $\kappa_{c,f}$ via $m_f \rightarrow 0!$

Ward identities for QCD+QED

The WIs are obtained in the standard way!

Including QED: covariant derivative does not commute with τ^i ! (because the links are flavour matrices)

- \Rightarrow New terms appear in WIs!
- Continuum WIs:

$$\partial_{\mu}(J_{V})^{j}_{\mu}(x) = i\epsilon_{3jk} \{ (m_{u} - m_{d})\bar{\psi}(x)\frac{\tau^{k}}{2}\psi(x) + i\bar{\psi}(x)\gamma_{\mu}A_{\mu}(x)\frac{\tau^{k}}{2}\psi(x) \}$$

$$\partial_{\mu}(J_{A})^{j}_{\mu}(x) = (m_{u} + m_{d})\bar{\psi}(x)\gamma_{5}\frac{\tau^{j}}{2}\psi(x) + \delta_{j3}\frac{1}{2}(m_{u} - m_{d})\bar{\psi}(x)\gamma_{5}\mathbf{1}\psi(x)$$

$$-\epsilon_{3jk}\bar{\psi}(x)A_{\mu}(x)\gamma_{\mu}\gamma_{5}\frac{\tau^{k}}{2}\psi(x)$$

(see also [Blum, et al PRD 82 (2010)])

- On the lattice with Wilson fermions: Similar WIs including new dimension 5 operators!
- WIs potentially provide clean definition for quark masses in QCD+QED!

Ward identities for QCD+QED – quark masses

The above WIs can be used to define current quark masses:

- Charged WIs $(\bar{d} \dots u \text{ and } \bar{u} \dots d)$:
 - Advantage: Disconnected diagrams do not appear!
 - Disadvantage: Vector and axial WI are needed for individual quark masses!
- "Neutral" WIs $(\bar{u} \dots u \text{ and } \bar{d} \dots d)$:

Define current quark masses associated with pions $\pi^0_{uu/dd}$ via:

$$m_{uu/dd}^{\rm AWI} = \frac{\nabla_x^0 \left\langle \left(\widetilde{A}_{uu/dd} \right)_0^3 P_{uu/dd} \right\rangle}{\left\langle P_{uu/dd} P_{uu/dd} \right\rangle}$$

- Advantage: Easy to compute (like standard PCAC masses)
- Disadvantages: Disconnected diagrams and neutral pion mixings are ignored.
 - \Rightarrow Leads to systematic effects of unknown size!

Note: For now ignore all subjects associated with multiplicative renormalisation.

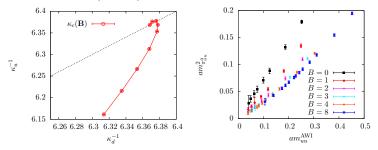
QCD spectroscopy and quark mass renormalisation in external magnetic fields with Wilson fermions

A first test of quark mass tuning for external magnetic fields

4. A first test of quark mass tuning for external magnetic fields

QCD spectroscopy and quark mass renormalisation in external magnetic fields with Wilson fermions \Box A first test of quark mass tuning for external magnetic fields

Determination of $\kappa_{c,u/d}$

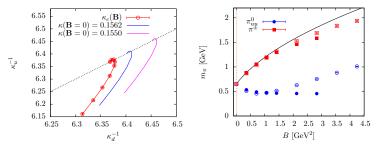

First naive strategy:

Perform a (linear) chiral extrapolation of $m_{uu/dd}^{AWI}$ to determine $\kappa_{c,u/d}$!

(Problems have been discussed above - but lets see how it works)

Results in the (\bar{m}_u, \bar{m}_d) -plane:

Compatibility with pseudo-pions:


(Results have been checked with higher orders in $(\bar{m} - \bar{m}_c)$.)

QCD spectroscopy and quark mass renormalisation in external magnetic fields with Wilson fermions \Box A first test of quark mass tuning for external magnetic fields

Results with adjusted κ -values – Pions

Results for pions:

 \Rightarrow Non-monotonic behaviour appears to be gone!

Next step: Look at behaviour of ρ -mesons!

Summary

- Presented status of exploratory study of the QCD spectrum in external magnetic fields.
- In lattice QCD ρ-mesons do not seem to condense!
- But: observe inconsistent results between Wilson and overlap fermions!
 - \Rightarrow Are the results for ρ -mesons correct?
- One systematic effect neglected so far: Additive quark mass renormalisation for Wilson fermions! Effect is present even for free quarks!
- We introduced (and briefly discussed) methods how to tune the quark mass! However, determining κ_c is conceptually challenging in the presence of external magnetic fields!
 - One method: Use neutral pseudo-pions, $\pi^0_{\mu\mu/dd}$.

Conceptually problematic: Disconnected diagrams and mixings neglected!

- ► A generically clean way to define quark masses: Ward identities!
 ⇒ We have derived them for the case of QCD+QED.
- ► First test: Look at tuning via masses associated with pseudo-pions. ⇒ Inconsistencies seem to disappear!

Perspectives

- What happens to ρ-mesons after tuning?
- Several issues have been ignored:
 - disconnected diagrams
 - mixings between neutral pions
 - \Rightarrow Is the tuning actually correct?
- Plans for the future:
 - Compare the results to results obtained with staggered fermions.
 - Compute disconnected diagrams relevant for neutral pions and look at their importance.
 - Look at the quark masses obtained with charged Ward identities: No disconnected diagrams are needed! Might provide clean definitions for quark masses in QCD+QED. Problem: Need accurate results for vector WIs.
 - Look at lattice artifacts and finite size effects.
- Final goal: Extract the spectrum in full QCD.

QCD spectroscopy and quark mass renormalisation in external magnetic fields with Wilson fermions

Thank you for your attention!

Lattice setup – Parameters

Test setup:

- Use 48×16^3 lattice.
- Standard Wilson action for gluons with $\beta = 6.00$.
 - \Rightarrow a \approx 0.09 fm
- Statistic ~ 200 configurations
- Inversions:
 - Use DFL-SAP-GCR solver
 - We use one inversion per configuration.
 - Point-smeared correlation functions.

Quark masses:

▶ Use around 8 (degenerate) κ -values to study the quark mass dependence with 0.153 $\leq \kappa \leq$ 0.1563.

 $(\kappa_c \approx 0.1571 \text{ [Bhattacharya, et al, PRD 53 (1996)]})$

- Mostly: Focus on $\kappa_{u,d} = 0.1562$
 - \Rightarrow $m_{\pi}(\mathbf{B}=0) \approx 400 \text{ MeV}$

[Bhattacharya, et al, PRD 53 (1996)]

[Lüscher, CPC 156 (2004); JHEP 0707 (2007)]