Lattice simulations of technicolour theories with adjoint fermions and supersymmetric Yang-Mills theory – the conformal window for adjoint fermions –

> Georg Bergner ITP AEC Bern

$u^{\scriptscriptstyle b}$

) JNIVERSITÄT BERN

Kobe: July 15, 2015

INTRO LSYM LMWT LN1AQCD C

1 Adjoint QCD and supersymmetric Yang-Mills theory

- 2 Lattice supersymmetric Yang-Mills theory
- 3 Lattice minimal walking technicolour
- 4 Lattice one flavour adjoint QCD

5 Conclusions

In collaboration with I. Montvay, G. Münster, U. D. Özugurel, S. Piemonte, D. Sandbrink, P. Giudice, A. Athenodorou, E. Bennett, B. Lucini

Conformal window for adjoint QCD

Technicolour candidates (more "natural" EW sector):

- requirement: close to conformal (walking) behaviour, large γ_m , light scalar
- so far: not clear if these requirements can be fullfilled
- perturbative arguments: conformal window starts above N_f = 2 adj. QCD

[Dietrich, Sannino, hep-ph/0611341]

Adjoint QCD

adjoint N_f flavour QCD:

INTRO

$$\mathcal{L} = \operatorname{Tr}\left[-\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \sum_{i}^{N_{f}}\bar{\psi}_{i}(\not{D} + m)\psi_{i}\right]$$

$$D_{\mu}\psi = \partial_{\mu}\psi + ig[A_{\mu},\psi]$$

- $\bullet \ \psi$ Dirac-Fermion in the adjoint representation
- adjoint representation allows Majorana condition $\psi = C \bar{\psi}^T$
- \Rightarrow half integer values of N_f : $2N_f$ Majorana flavours

Symmetry breaking by condensate:

$$SU(2N_f) \rightarrow SO(2N_f)$$

INTRO	LSYM	LMWT	LN1AQCD	CON

Mass spectrum of near conformal theory

[Lucini, arXiv:1503.00371]

- QCD like: light pNGb from chiral symmetry breaking at $m \rightarrow 0$
- (near) conformal: *m* only scale setting parameter, no mass scale at $m \rightarrow 0$
- $M \sim m^{1/(1+\gamma_m)}$

LSYM

$N_f = 1/2$: Lattice simulations of SYM

Safe lower point:

theory not conformal, multiplet formation 0⁻, 0⁺, spin-1/2 $m_{0^{++}} > m_{a-\pi}$; finite mass in chiral limit: $m_{a-\pi} \rightarrow 0$

 \longrightarrow More on Saturday: Talk by Pietro Giudice and Stefano Piemonte

$N_f = 2$: Lattice simulations of MWT

Simulation details:

- DESY-Münster (preliminary)
- two lattice spacings ($\beta = 1.5, 1.7$)
- three volumes $(24^3, 32^3, (48^3))$
- ullet ~ 5 different residual quark masses
- tree level improved gauge action, stout smeared unimproved Wilson fermions

Mass spectrum of MWT

Mass spectrum of MWT at different β

LMWT

Observations for MWT

Safe upper point: theory seems conformal, light scalar $m_{0^{++}} < m_{PS}$; conformal scaling

• spectrum consistent with $\gamma_m \sim 0.38 \Rightarrow$ might be too small

New result for $N_f = 2$: Spin-1/2 state

$$\sum_{\mu,\nu}\sigma_{\mu\nu}\mathrm{tr}\left[\mathsf{F}^{\mu\nu}\lambda\right]$$

- specific state for adjoint QCD
- fractionally charged particles (?)
- Spin-1/2 first state above scalar glueball, below m_{PS}

- dominant disconnected contributions
- below m_{PS} but still much larger than the glueball 0^{++}
- gluonic dominance of the scalar ground state

Lattice simulations of $N_f = 1$ adjoint QCD

Simulation details:

- investigated finite volume effects (less severe than for MWT)
- unimproved Wilson action
- several states analysed (baryons, mesons, glueballs, ...)
- presented in: [PoS LATTICE2013 (2014) 066], [Athenodorou, Bennett, GB, Lucini, arXiv:1412.5994]
- new update: second lattice spacing ($\beta=2.05,\ \beta=2.2$)

The states of $N_f = 1$ adjoint QCD

- SU(2): baryons (diquarks) from two spinors
- $SU(2) \rightarrow SO(2) \simeq U(1)_B$: states are labelled by $U(1)^P$
- $\bar{\psi}\psi$: 0⁺, scalar meson ("scalar singlet")
- $\psi^T C \psi$: 2⁻, pseudoscalar baryon ("scalar triplet")
- $\psi^T C \gamma_5 \psi$: 2⁺, scalar baryon ("pseudoscalar triplet") = pNGb

 $\gamma_m^*=$ 0.9, from mode number: $\gamma_m^*=$ 0.92(1)

Results for $N_f = 1$ adjoint QCD $\beta = 2.2$

 $\gamma_m^* = 0.7$

- light scalar ☑
- (near) conformal 🗹
- $\gamma_m^* \sim 0.9$ 🗹
- smaller lattice spacing: $\gamma_m^* \sim$ 0.7 (preliminary)

Further investigations needed:

- combination with additional fermions needed for ew symmetry breaking (UMWT)
- $\bullet\,$ relation to $\mathcal{N}=2$ supersymmetric YM theory

Conclusions

- lattice simulations show SUSY multiplet structure in SYM
- lattice simulations resolve large difference of non-conformal SYM and conformal MWT
- $N_f = 1$ adjoint QCD on the (near) conformal side and includes light scalar and large γ_m
- SYM below lower end of theories that show light scalar and (near) conformal behaviour
- "exotic" state in adjoint QCD: $m_{spin-1/2} < m_{PS}$ for $N_f = 2$; $m_{spin-1/2} > m_{scalar \ baryon}$ for $N_f = 1$
- light mesonic scalar state for $N_f = 1$ and 2; $N_f = 2$: glueball better signal for low scalar state