Overview & introduction	Free energy	Onset of thermal effects	Debye screening	

Lattice calculation of static quark correlators at finite temperature

J. Weber¹ in collaboration with A. Bazavov², N. Brambilla¹, M.Berwein¹, P. Petrezcky³ and A. Vairo¹

 $^{1}\mathrm{Physik}$ Department, Technische Universität München, Garching, $^{2}\mathrm{University}$ of Iowa, $^{3}\mathrm{Brookhaven}$ National Lab

33rd International Symposium on Lattice Field Theory, 07/17/2015 Kobe

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Overview & introduction	Free energy	Onset of thermal effects	Debye screening	Summary

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

- Overview & introduction
- Static quark free energy
- Onset of thermal effects
- Screening mass
- Summary & outlook

Overview & introduction	Free energy	Onset of thermal effects	Debye screening	
0				
Introduction				

Commonly known facts

- Asymptotic freedom: QCD in thermal medium at short distances vacuum-like with weak coupling
- Hard thermal loop approximation: QCD in thermal medium for large distances and weak coupling: Debye screening of colour charges
- For weak coupling: description of heavy quarkonia in NREFTs

Transition between vacuum-like and screening regions

• Quarkonium suppression indicates temperature in heavy-ion collisions

- Distance of the transition between regions?
- $\bullet~Q\bar{Q}$ free energies are observables sensitive to the regions
- Determine screening mass in screening region

Our lattice setup

- HISQ 2+1 flavours: $N_\tau = 4, 6, 8, 10, 12,$ aspect ratio 4
- Temperature range $115 \,\mathrm{MeV} \lesssim T \lesssim 1.4 \,\mathrm{GeV}, \, M_\pi \approx 160 \,\mathrm{MeV}$

Overview & introduction	Free energy	Onset of thermal effects	Debye screening	
00				
Vacuum-like and screening regime				
Effective coupling α_{qq}				

- Effective coupling $\alpha_{qq} = 3/4r^2 \frac{\partial E(r)}{\partial r}$, $E(r) = \{F_1(T, r), V_0(r)\}$
- max $\alpha_{qq} \gtrsim 0.5$ for $T \lesssim 300$ MeV indicates strongly coupled plasma
- Regions separated by $\max \alpha_{qq}$: vacuum physics or Debye screening

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Overview & introduction	Free energy	Onset of thermal effects O	Debye screening 000	
Static $Q\bar{Q}$ free ener	ſgy			

- Wilson lines represent static $Q, \bar{Q}: \psi(\tau, \mathbf{r}) = W(0, \tau; \mathbf{r})\psi(0, \mathbf{r}), \ldots$
- Polyakov loop correlator gives exponentiated free energy

$$P_c = e^{-(F_{Q\bar{Q}} - F_0)/T} = \frac{\langle \operatorname{Tr} W(1/T, 0; \mathbf{r}_1) \operatorname{Tr} W(0, 1/T; \mathbf{r}_2) \rangle}{N_c^2}$$

 $\bullet~P_c$ formally splits into singlet and octet contributions

$$P_{c} = \frac{\left\langle \operatorname{Tr}\left[W(\frac{1}{T}, 0; \mathbf{r}_{1})W(0, \frac{1}{T}; \mathbf{r}_{2})\right] \right\rangle}{N_{c}^{3}} + \frac{\left\langle \operatorname{Tr}\left[W(\frac{1}{T}, 0; \mathbf{r}_{1})T^{*}W(0, \frac{1}{T}; \mathbf{r}_{2})T^{*}\right] \right\rangle}{T_{F}N_{c}^{2}}$$
$$= \frac{1}{N_{c}^{2}} \exp\left[-F_{1}/T\right] + \frac{N_{c}^{2} - 1}{N_{c}^{2}} \exp\left[-F_{8}/T\right]$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Overview & introduction	Free energy	Onset of thermal effects O	Debye screening 000	
Singlet and octet	free energies			

- - $\exp\left[-F_1/T\right]$ and $\exp\left[-F_8/T\right]$ undergo mixing, gauge-dependent
 - For lattice QCD, singlet (octet) free energy from
 - Ocyclic Wilson loop
 - loop closed by spatial Wilson lines (gauge invariant)
 - path dependence leads to extra divergences
 - 2 Coulomb gauge Wilson line correlator (aka singlet free energy correlator)

▲□▶▲□▶▲□▶▲□▶ □ のQの

- no spatial lines required
- gauge dependence leaves physical interpretation questionable
- Both correlators agree with static energy only at leading order

	Free energy	Onset of thermal effects	Debye screening	
	000000			
Cyclic Wilson loop				
Cyclic Wilson loop				

- $\bullet\,$ Logarithm of ratios over Coulomb gauge Wilson line correlator C^s
- $\bullet\,$ Different iterations of spatial HYP smearing for cyclic Wilson loops W_N

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Singlet fraction in C^s and W_N decreases for larger rT (cf. P_c)

	Free energy	Onset of thermal effects	Debye screening	
	000000			
Cyclic Wilson loop				
Perturbative pred	dictions			

• HTL at one loop for rT>1

$$F_{1}(T,r) = -\frac{N_{c}^{2}-1}{2N_{c}}\alpha_{s}m_{D} - \frac{N_{c}^{2}-1}{2N_{c}}\alpha_{s}\frac{\exp(-m_{D}r)}{r}$$

$$F_{8}(T,r) = -\frac{N_{c}^{2}-1}{2N_{c}}\alpha_{s}m_{D} + \frac{1}{2N_{c}}\alpha_{s}\frac{\exp(-m_{D}r)}{r}$$

$$F_{Q\bar{Q}}(T,r) = -\frac{N_{c}^{2}-1}{2N_{c}}\alpha_{s}m_{D} - \frac{1}{N_{c}^{2}}\alpha_{s}^{2}\frac{\exp(-2m_{D}r)}{r^{2}T}$$

• Magnetic mass contributes at even larger distances in EQCD:

$$\frac{F_{Q\bar{Q}}(T,r) - 2F_{Q\bar{Q}}(T,r \to \infty)}{T} \sim \#_1 \frac{\exp\left(-m_{A_0}r\right)}{r} + \#_2 \frac{\exp\left(-m_{M}r\right)}{r}$$
$$m_{A_0} < m_M \text{ [despite power counting } m_{A_0} \sim 2m_D \sim gT, \ m_M \sim g^2T \text{]}$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

	Free energy	Onset of thermal effects	Debye screening	
	000000			
Single quark free energy				
Bare single quar	k free energy <i>F</i>	- 0		

• Quark free energy from Polyakov loop: $-F_Q^{\text{bare}}/T = \frac{1}{N_\tau} \log \text{Tr } W(0, \frac{1}{T})$

(ロ)、

Overview & introduction	Free energy	Onset of thermal effects	Debye screening	
	000000			
Single quark free energy				
Single quark free energy Fo				

 \bullet Combine three renormalisation schemes & extend F_Q to $T\approx 700\,{\rm MeV}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

	Free energy	Onset of thermal effects	Debye screening	
	0000000			
Single quark free energy				

Single quark free energy F_Q

• Combine three renormalisation schemes & extend F_Q to $T\approx 700\,{\rm MeV}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Bazavov and Petreczky, Phys. Rev. D 87 (2013) 9 : consistent

	Free energy	Onset of thermal effects	Debye screening	
	0000000			
Single quark free energy				
	_			

Single quark free energy F_Q

- Combine three renormalisation schemes & extend F_Q to $T \approx 700 \,\mathrm{MeV}$
- Bazavov and Petreczky, Phys. Rev. D 87 (2013) 9 : consistent
- Borsanyi et al., JHEP 1504 (2015) 138 : for T = 200 MeV set to zero

	Free energy	Onset of thermal effects	Debye screening	
	0000000			
Single quark free energy				

Single quark free energy F_Q with gradient flow

F_Q w. gradient flow (finite *N_τ*) from H.-P. Schadler (Wed. 15th, 17:50)
Constant flow time in physical units, same for all temperatures

Overview & introduction	Free energy	Onset of thermal effects	Debye screening	Summary
00	0000000		000	
Quark-Antiquark free energy				
	с г			

Quark-Antiquark free energy $F_{Q\bar{Q}_1}$

• Short distance & low temperature: reproduce static energy (T = 0)

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ⊙

	Free energy	Onset of thermal effects	Debye screening	
	0000000			
Quark-Antiquark free energy				
	6	_		

Quark-Antiquark free energy $F_{Q\bar{Q}}$

Short distance & low temperature: reproduce static energy (T = 0)
Borsanyi et al., JHEP 1504 (2015) 138 : for T = 200 MeV set to zero

000

Overview & introduction	Free energy	Onset of thermal effects	Debye screening		
	000000				
Singlet free energy					
Singlet free ener	Singlet free energy E				

• Reproduce static energy (T = 0): larger distances & higher T

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Overview & introduction	Free energy	Onset of thermal effects	Debye screening	
	000000			
Singlet free energy				
Singlet free ener	rgv F1			

• Reproduce static energy (T = 0): larger distances & higher T

- Kaczmarek, PoS CPOD **07** (2007) 043, $N_{\tau} = 4, 6, M_{\pi} \sim 220 \text{MeV}$
- Our $N_{\tau} = 6$ and continuum results are higher: chiral or cutoff effects?

• Static (T = 0) and singlet free energies: $v(T, r) = V_0(r) - F_1(T, r)$

- Large cutoff effects, minimum visible only for $N_\tau \geq 10$
- Continuum extrapolation with only $N_{\tau} = 8, 10, 12$

• Static (T = 0) and singlet free energies: $v(T, r) = V_0(r) - F_1(T, r)$

• T independent falling slope at $rT\approx 0.15,$ minimum at $rT\approx 0.25$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

• Static (T = 0) and singlet free energies: $v(T, r) = V_0(r) - F_1(T, r)$

 $\bullet\,$ Estimate cutoff effects as $\sim 10\text{--}20$ MeV from data at $T\approx 410\,\mathrm{MeV}$

э

• For $rT \leq 0.3$ almost constant, for rT > 0.3 rapid rise

	Free energy	Onset of thermal effects	Debye screening	
			000	
Screening mass				
Screening mass				

- At large distance & weak coupling $F_1(T,\infty) = F_{Q\bar{Q}}(T,\infty) = 2F_Q(T)$
- Subtract asymptotic constant to define screening functions

$$\begin{split} S_1(T, rT) &= rT \frac{F_1(T, r) - 2F_Q(T)}{T} \stackrel{\text{HTL}}{\to} - \frac{N_c^2 - 1}{2N_c} \alpha_s \exp\left(-m_D r\right), \\ S_{\text{avg}}(T, rT) &= (rT)^2 \frac{F_{Q\bar{Q}}(T, r) - 2F_Q(T)}{T} \stackrel{\text{HTL}}{\to} - \frac{1}{N_c^2} \alpha_s^2 \exp\left(-2m_D r\right) \end{split}$$

- Theoretically ideal: extract m_D from $F_{Q\bar{Q}}$, but data is too noisy
- Singlet free energy: extra rT dependendence due to $Z^{\rm ren}$
 - Ocyclic Wilson loop extra linear divergence due to self-energy
 - 2 Coulomb gauge correlator: gauge dependence, but cleanest probe

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

	Free energy	Onset of thermal effects	Debye screening	
			000	
Screening mass				
Screening mass	extraction			

• $rT \gg 1$, weak coupling: $\log S_1(T, r) = A - \frac{M}{T} rT \xrightarrow{HTL} \log (C_F \alpha_s) - \frac{m_D}{T} rT$

Screening mass					
			000		
Overview & introduction	Free energy	Onset of thermal effects	Debye screening		

Screening mass: extraction

• $rT \gg 1$, weak coupling: $\log S_1(T, r) = A - \frac{M}{T} rT \xrightarrow{HTL} \log (C_F \alpha_s) - \frac{m_D}{T} rT$ • Estimate systematical uncertainty with derivative $\partial (\frac{M}{T}) / \partial (rT)$

	Free energy	Onset of thermal effects	Debye screening	
			000	
Screening mass				
Screening mass	extraction			

 \bullet Largest rT before signal loss, increase errors w. systematic effects

• Jackknife estimate of extraction method dependence w. 8×4 methods

	Free energy	Onset of thermal effects	Debye screening	
			000	
Screening mass				
_				

Screening mass: comparison with other lattice results

• Kaczmarek, PoS CPOD 07 (2007) 043: lower due to heavier M_π

• Borsanyi et al., JHEP 1504 (2015) 138: magnetic mass $m_M(T)$

Free energy	Onset of thermal effects	Debye screening	Summary

Summary

- Extend numerical results for static quark free energy to $T\approx700\,{\rm MeV}$ and $Q\bar{Q}$ free energy to $T\approx600\,{\rm MeV}$
- Study the onset of screening with new observable $V_0(r) F_1(T, r)$, field-theoretically cleaner than $\alpha_{qq}(T, r)$
- Extract screening mass in screening region

Outlook

- Comparison of $V_0(r) F_1(T, r)$ with weak coupling (pNRQCD)
- Need finer zero temperature lattices $[a\sim 0.025, 0.03, 0.035\,{\rm fm}]$
- Extract spectral function from static correlators, extract imaginary part of potential with 3 dynamical flavours

Overview & introduction	Free energy	Onset of thermal effects	Debye screening	Summary

Cyclic Wilson loop

• Boost w. factor $\exp(3rT)$, $\log P_c/C^s$ w. error reduced by factor 1/20

- Small rT: negative values indicate larger octet fraction than C^s (cf. P_c)
- $\bullet\,$ Unsmeared Wilson loop on top of Polyakov loop correlator for $rT\gtrsim 1$

	Free energy	Onset of thermal effects	Debye screening	Summary
00	0000000	0	000	

Scale r_0 and renormalisation constant

Use T = 0 data from Bazavov et al., Phys. Rev. D 90 (2014) 9
Scale setting with r₁ (r₀) for fine (coarse) lattices

・ロト ・ 同ト ・ ヨト ・ ヨト

э

	Free energy	Onset of thermal effects	Debye screening	Summary
00	000000	0	000	

Scale r_0 and renormalisation constant

- Use T = 0 data from Bazavov et al., Phys. Rev. D **90** (2014) 9
- Scale setting with r_1 (r_0) for fine (coarse) lattices
- Renormalisation constant $Z^{ren}(\beta)$ from T = 0 static energy

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Renormalisation schemes for F_Q

• Old (standard) scheme: use $Z^{\text{ren}}(\beta)$ (rescaled with N_{τ}) for each N_{τ}

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

	Free energy	Onset of thermal effects	Debye screening	Summary
00	0000000		000	
D 11 11				

Renormalisation schemes for F_Q

Old (standard) scheme: use Z^{ren}(β) (rescaled with N_τ) for each N_τ
 New scheme: avoid extrapolated Z^{ren}(β) assuming small cutoff effects:
 Z^{ren}(T, N_τ) = Z^{ren}(T, N_τ^{ref}) + 2 (F_Q^{bare}(T, N_τ) - F_Q^{bare}(T, N_τ^{ref}))

Overview & introduction	Free energy	Onset of thermal effects	Debye screening	Summary
00	0000000	0	000	

Screening functions

・ロト ・ 理 ト ・ ヨ ト ・ э

	Free energy	Onset of thermal effects	Debye screening	Summary
00	0000000		000	

rT dependence of screening mass

<ロト <回ト < 注ト < 注ト æ

Screening mass: comparison with weak coupling calculations

• Braaten and Nieto, Phys. Rev. D 53 (1996) 3421: electric screening mass

$$m_{\rm el}^2 = 4\pi\alpha_s T^2 \left(\frac{N_c}{3} + \frac{N_f}{6}\right) + \mathcal{O}(\alpha_s^2)$$

• Plot $A\sqrt{m_{\rm el}^2[\mathcal{T},\mu,g(\mu)]}/\mathcal{T}$ w. $m_{\rm el}$ at one or two-loop, $\alpha_s(\mu)$ at two-loop

Overview & introduction	Free energy	Onset of thermal effects	Debye screening	Summary
00	0000000		000	
Short distance c	utoff effects			

- $\bullet\,$ Data with equal temperature and neighbouring N_{τ} at short distance
- $\bullet\,$ Estimate systematic uncertainties by studying rT-dependence of cutoff effect
- Compute difference of correlators $C_5 C_L$ and subtract interval average

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

- Absolute maximum of remainder is considered as systematical uncertainty and applied to all distances up to largest rT of interval
- Quadratically added to statistical errors
- Significant only for $V_0(r) F_1(T, r)$

	Free energy	Onset of thermal effects	Debye screening	Summary
00	0000000		000	
Cutoff effects in	$V_{o}(r) = E_{1}(T)$	r)		

0(1

Τ (

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

	Free energy	Onset of thermal effects	Debye screening	Summary
00	0000000		000	
Cutoff effects in	$S_1(T, rT)$			

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

	Free energy	Onset of thermal effects	Debye screening	Summary
00	0000000		000	
Cutoff effects in	$S_{avg}(T, rT)$			

	Free energy	Onset of thermal effects	Debye screening	Summary
00	000000		000	

Scaling behaviour: $V_0(r) - F_1(T, r)$

Scaling behaviour: $S_1(T, rT)$

Free energy	Onset of thermal effects	Debye screening	Summary
0000000		000	
	Free energy 0000000	Free energy Onset of thermal effects 0000000 0	Free energy Onset of thermal effects Debye screening 0000000 0 000

Scaling behaviour: $S_{avg}(T, rT)$

