Canonical simulations of Supersymmetric Yang-Mills Quantum Mechanics

Georg Bergner, Hang Liu and Urs Wenger

Albert Einstein Center for Fundamental Physics University of Bern

$$
\boldsymbol{u}^{b}
$$

UNIVERSITÅT BERN
based on
JHEP 1412 (2014) 044 [arXiv:1410.0235] (with Kyle Steinhauer)

Lattice 2015, 18/07/2015, Kobe, Japan

Dualities, black holes and all that

Gauge/gravity duality conjecture:

- $U(N)$ gauge theories as a low energy effective theory of N D-branes
- Dimensionally reduced large- N super Yang-Mills might provide a nonperturbative formulation of the string/M-theory
- Connection to black p-branes allows studying black hole thermodynamics through strongly coupled gauge theory:

Motivation

Super Yang-Mills quantum mechanics:

- Interesting physics:
- testing gauge/gravity duality,
- thermodynamics of black holes
- Interesting expectations:
- discrete vs. continuous spectrum (depending on the fermion sector),
- flat directions
- Interesting 'bosonisation':
- fermion contribution decomposes into fermion sectors,
- allows for a local fermion algorithm,
- structure is the same as for QCD!

Continuum Model

- Start from $\mathcal{N}=1$ SYM in $d=4$ (or 10) dimensions
- Dimensionally reduce to 1 -dim. $\mathcal{N}=4$ (or 16) SYM QM:

$$
S=\frac{1}{g^{2}} \int_{0}^{\beta} d t \operatorname{Tr}\left\{\left(D_{t} X_{i}\right)^{2}-\frac{1}{2}\left[X_{i}, X_{j}\right]^{2}+\bar{\psi} D_{t} \psi-\bar{\psi} \sigma_{i}\left[X_{i}, \psi\right]\right\}
$$

- covariant derivative $D_{t}=\partial_{t}-i[A(t), \cdot]$,
- time component of the gauge field $A(t)$,
- spatial components become bosonic fields $X_{i}(t)$ with $i=1, \ldots, d-1$,
- anticommuting fermion fields $\bar{\psi}(t), \psi(t)$,
- σ_{i} are the γ-matrices in d dimensions
- all fields in the adjoint representation of $\operatorname{SU}(N)$

Continuum Model

- Start from $\mathcal{N}=1$ SYM in $d=4$ (or 10) dimensions
- Dimensionally reduce to 1-dim. $\mathcal{N}=4$ (or 16) SYM QM:

$$
S=\frac{1}{g^{2}} \int_{0}^{\beta} d t \operatorname{Tr}\left\{\left(D_{t} X_{i}\right)^{2}-\frac{1}{2}\left[X_{i}, X_{j}\right]^{2}+\bar{\psi} D_{t} \psi-\bar{\psi} \sigma_{i}\left[X_{i}, \psi\right]\right\}
$$

- covariant derivative $D_{t}=\partial_{t}-i[A(t), \cdot]$,
- time component of the gauge field $A(t)$,
- spatial components become bosonic fields $X_{i}(t)$ with $i=1,2,3$ (for $\mathcal{N}=4$),
- anticommuting fermion fields $\bar{\psi}(t), \psi(t)$, (complex 2-component spinors for $\mathcal{N}=4$)
- σ_{i} are the γ-matrices in d dimensions (Pauli matrices for $\mathcal{N}=4$)
- all fields in the adjoint representation of $\operatorname{SU}(N)$
- Discretise the bosonic part:

$$
S_{B}=\frac{1}{g^{2}} \sum_{t=0}^{L_{t}-1} \operatorname{Tr}\left\{D_{t} X_{i}(t) D_{t} X_{i}(t)-\frac{1}{2}\left[X_{i}(t), X_{j}(t)\right]^{2}\right\}
$$

with $D_{t} X_{i}(t)=U(t) X_{i}(t+1) U^{\dagger}(t)-X_{i}(t)$

- Use Wilson term for the fermionic part,

$$
S_{F}=\frac{1}{g^{2}} \sum_{t=0}^{L_{t}-1} \operatorname{Tr}\left\{\bar{\psi}(t) D_{t} \psi(t)-\bar{\psi}(t) \sigma_{i}\left[X_{i}(t), \psi(t)\right]\right\}
$$

since

$$
\partial^{\mathcal{W}}=\frac{1}{2}\left(\nabla^{+}+\nabla^{-}\right) \pm \frac{1}{2} \nabla^{+} \nabla^{-} \quad \stackrel{d=1}{\Longrightarrow} \nabla^{ \pm}
$$

Lattice regularisation and reduced determinant

- Specifically, we have

$$
\begin{aligned}
& S_{F}=\frac{1}{2 g^{2}} \sum_{t=0}^{L_{t}-1}\left[-\bar{\psi}_{\alpha}^{a}(t) W_{\alpha \beta}^{a b}(t) e^{+\mu L_{t}} \psi_{\beta}^{b}(t+1)+\bar{\psi}_{\alpha}^{a}(t) \Phi_{\alpha \beta}^{a c}(t) \psi_{\beta}^{c}(t)\right] \\
& \text { where } W_{\alpha \beta}^{a b}(t)=2 \delta_{\alpha \beta} \otimes \operatorname{Tr}\left\{T^{a} U(t) T^{b} U(t)^{\dagger}\right\} .
\end{aligned}
$$

- Φ is a $2\left(N^{2}-1\right) \times 2\left(N^{2}-1\right)$ Yukawa interaction matrix:

$$
\Phi_{\alpha \beta}^{a c}(t)=\left(\sigma_{0}\right)_{\alpha \beta} \otimes \delta^{a c}-2\left(\sigma_{i}\right)_{\alpha \beta} \otimes \operatorname{Tr}\left\{T^{a}\left[X_{i}(t), T^{c}\right]\right\}
$$

- Dimensional reduction of determinant at finite density $\mu \neq 0$:

$$
\operatorname{det} \mathcal{D}_{p, a}\left[U, X_{i} ; \mu\right]=\operatorname{det}\left[\prod_{t=0}^{L_{t}-1} \Phi(t) W(t) \mp e^{+\mu L_{t}}\right]
$$

Fugacity expansion

- Dimensional reduction of determinant gives: (for finite density $\mu \neq 0$)

$$
\operatorname{det} \mathcal{D}_{p, a}[U, X ; \mu]=\operatorname{det}\left[\prod_{t=0}^{L_{t}-1} \Phi(t) W(t) \mp e^{+\mu L_{t}}\right]
$$

- Fugacity expansion is easy:

$$
\operatorname{det} \mathcal{D}_{p, a}\left[U, X_{i} ; \mu\right]=\sum_{n_{f}=0}^{2\left(N^{2}-1\right)}\left(\mp e^{\mu L_{t}}\right)^{n_{f}} \operatorname{det} \mathcal{D}_{n_{f}}\left[U, X_{i}\right]
$$

- diagonalise $\mathcal{T} \equiv \prod_{t=0}^{L_{t}-1} \Phi(t) W(t) \quad \rightarrow$ eigenvalues $\left\{\tau_{i}\right\}$
- calculate coefficients of the characteristic polynomial:

$$
\operatorname{det} \mathcal{D}_{p, a}\left[U, X_{i} ; \mu\right]=\prod_{j=1}^{2\left(N^{2}-1\right)}\left(\tau_{j} \mp e^{\mu L_{t}}\right)
$$

Fugacity expansion and transfer matrices

- Canonical determinants are expressed in terms of elementary symmetric functions S_{k} of order k of $\left\{\tau_{i}\right\}$:

$$
\operatorname{det} \mathcal{D}_{n_{f}}\left[U, X_{i}\right]=S_{n_{f}^{\text {max }}-n_{f}}(\mathcal{T})
$$

where

$$
S_{k}(\mathcal{T}) \equiv S_{k}\left(\left\{\tau_{i}\right\}\right)=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n_{f}^{\max }} \prod_{j=1}^{k} \tau_{i_{j}} .
$$

Crucial object:

$$
\mathcal{T} \equiv \prod_{t=0}^{L_{t}-1} \Phi(t) W(t) \quad \Leftrightarrow \quad \text { product of transfer matrices }
$$

- Proof via fermion loop formulation:
\Rightarrow explicit construction in each fermion sector

Fermion loop formulation \Leftrightarrow hopping expansion to all orders

- Configurations can be classified according to the number of propagating fermions n_{f} :

$$
n_{f}=0
$$

$$
n_{f}=1
$$

$$
\cdots \quad n_{f}=2\left(N^{2}-1\right)
$$

Transfer matrices

- Propagation of fermions described by transfer matrices:

$$
\begin{aligned}
& T_{n_{f}}^{\Phi}(t) \Rightarrow \text { sums up local vacuum contibutions, } \\
& T_{n_{f}}^{W}(t) \Rightarrow \text { projects onto gauge invariant states }
\end{aligned}
$$

Explicitly:

$$
\begin{array}{lr}
\left(T_{n_{f}}^{\Phi}\right)_{A B}=(-1)^{p(A, B)} \operatorname{det} \Phi^{B A A} & \text { cofactor } C_{B A}(\Phi) \\
\left(T_{n_{f}}^{W}\right)_{A B}=\operatorname{det} W^{A B} & \text { minor } M_{A B}(W)
\end{array}
$$

- Size of $T_{n_{f}}^{\Phi, W}$ is given by $N_{\text {states }}=n_{f}^{\max !} /\left(n_{f}^{\max }-n_{f}\right)!\cdot n_{f}$!
- Fermion contribution to the partition function is simply

$$
\operatorname{det} \mathcal{D}_{n_{f}}\left[U, X_{i}\right]=\operatorname{Tr}\left[\prod_{t=0}^{L_{t}-1} T_{n_{f}}^{\Phi}(t) \cdot T_{n_{f}}^{W}(t)\right]
$$

Transfer matrices and canonical determinants

- Fermion contribution to the partition function is simply

$$
\operatorname{det} \mathcal{D}_{n_{f}}\left[U, X_{i}\right]=\operatorname{Tr}\left[\prod_{t=0}^{L_{t}-1} T_{n_{f}}^{\phi}(t) \cdot T_{n_{f}}^{W}(t)\right]
$$

- Use Cauchy-Binet formula (and some algebra):

$$
\left(\prod_{t=0}^{L_{t}-1}\left[T_{n_{f}}^{\Phi}(t) \cdot T_{n_{f}}^{W}\right]\right)_{A B}=(-1)^{p(A, B)} \operatorname{det} \mathcal{T}^{A B}=C_{A B}(\mathcal{T})
$$

Sum over principal minors:

$$
\operatorname{det} \mathcal{D}_{n_{f}}\left[U, X_{i}\right]=\sum_{B} \operatorname{det} \mathcal{T}^{B B} \equiv E_{n_{f}}(\mathcal{T})
$$

- Finally one can proof by linear algebra

$$
E_{n_{f}}(\mathcal{T})=S_{n_{f}^{\text {max }}-n_{f}}(\mathcal{T}) .
$$

Summary

- Canonical determinants are directly given by transfer matrices

$$
\operatorname{det} \mathcal{D}_{n_{f}}\left[U, X_{i}\right]=\operatorname{Tr}\left[\prod_{t=0}^{L_{t}-1} T_{n_{f}}^{\Phi}(t) \cdot T_{n_{f}}^{W}(t)\right]=\sum_{B} \operatorname{det} \mathcal{T}^{B B}
$$

constructed from reduced matrix

$$
\mathcal{T} \equiv \prod_{t=0}^{L_{t}-1} \Phi(t) W(t)
$$

- Proof is applicable to QCD, algebraic structure is the same!
- Remarks:
- \mathcal{T} describes the dimensionally reduced effective action for W,
- our result allows for local fermion algorithm,
- allows canonical simulations at fixed n_{f}.

Canonical simulations at fixed n_{f}

- Canonical determinants are real: $\operatorname{det} \mathcal{D}_{n_{f}}\left[U, X_{i}\right]=\operatorname{det} \mathcal{D}_{n_{f}}\left[U, X_{i}\right]^{*}$
- Furthermore, for $n_{f}=0$ and $n_{f}=n_{f}^{\max }$ (quenched):

$$
\operatorname{det} \mathcal{D}_{n_{f}}\left[U, X_{i}\right] \geq 0 \quad \text { positive }
$$

- Charge conjugation ensures symmetry between sectors:
- broken by the Wilson discretisation,
- restored in the continuum.
- Simulations for $N=3$ with $n_{f}^{\max }=2\left(N^{2}-1\right)=16$:
- $\mathrm{SU}(3)$ adjoint \Rightarrow sectors $n_{f}=\{0,1, \ldots, 16\}$
- Measure moduli of Polyakov loop and scalar field:

$$
P=\left|\operatorname{Tr}_{F}\left[\prod_{t} U(t)\right]\right|, \quad R^{2} \equiv|X|^{2}=X_{i}^{a} X_{i}^{a}
$$

Canonical simulations at fixed n_{f}
Polyakov loop for $n_{f}=16$ (quenched):

Canonical simulations at fixed n_{f}
Polyakov loop for $n_{f}=16$ and $n_{f}=0$:

Canonical simulations at fixed n_{f}

Polyakov loop for $n_{f}=16,15$ and $n_{f}=0,1$:

Canonical simulations at fixed n_{f}

Polyakov loop for $n_{f}=16$ to $n_{f}=11$:

Canonical simulations at fixed n_{f}
Moduli of X for $n_{f}=16$ (quenched):

Canonical simulations at fixed n_{f}
Moduli of X for $n_{f}=16$ and $n_{f}=0$:

Canonical simulations at fixed n_{f}
Moduli of X for $n_{f}=16,15$ and $n_{f}=0,1$:

Canonical simulations at fixed n_{f}

Moduli of X for $n_{f}=16$ to $n_{f}=11$:

Canonical simulations at fixed n_{f}
Fermion action $S_{F}=\left\langle\ln \operatorname{det} \mathcal{D}_{n_{f}}\right\rangle_{n_{f}}$ for $n_{f}=16$ (quenched):

Canonical simulations at fixed n_{f}
Fermion action $S_{F}=\left\langle\ln \operatorname{det} \mathcal{D}_{n_{f}}\right\rangle_{n_{f}}$ for $n_{f}=16$ and $n_{f}=0$:

Canonical simulations at fixed n_{f}
Fermion action $S_{F}=\left\langle\ln \text { det } \mathcal{D}_{n_{f}}\right\rangle_{n_{f}}$ for $n_{f}=15$ and $n_{f}=1$:

Canonical simulations at fixed n_{f}
Fermion action $S_{F}=\left\langle\ln \text { det } \mathcal{D}_{n_{f}}\right\rangle_{n_{f}}$ for $n_{f}=14$ and $n_{f}=2$:

Canonical simulations at fixed n_{f}
Fermion action $S_{F}=\left\langle\ln \operatorname{det} \mathcal{D}_{n_{f}}\right\rangle_{n_{f}}$ for $n_{f}=13$ and $n_{f}=3$:

Summary and Outlook

- Canonical determinants are directly given by transfer matrices

$$
\operatorname{det} \mathcal{D}_{n_{f}}\left[U, X_{i}\right]=\operatorname{Tr}\left[\prod_{t=0}^{L_{t}-1} T_{n_{f}}^{\Phi}(t) \cdot T_{n_{f}}^{W}(t)\right]=\sum_{B} \operatorname{det} \mathcal{T}^{\beta B}
$$

constructed from reduced matrix

$$
\mathcal{T} \equiv \prod_{t=0}^{L_{t}-1} \Phi(t) W(t)
$$

- Opens the way to investigate:
- correlation functions, spectra, phase transition,...
- large- N limit,
- $\mathcal{N}=16$ SYM QM and black hole thermodynamics,
- reweighting, finite density,...

