Canonical simulations of Supersymmetric Yang-Mills Quantum Mechanics

Georg Bergner, Hang Liu and Urs Wenger

Albert Einstein Center for Fundamental Physics University of Bern

⁶ UNIVERSITÄT BERN

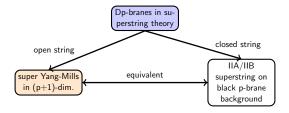
based on JHEP 1412 (2014) 044 [arXiv:1410.0235] (with Kyle Steinhauer)

Lattice 2015, 18/07/2015, Kobe, Japan

Dualities, black holes and all that

Gauge/gravity duality conjecture:

- *U*(*N*) gauge theories as a low energy effective theory of *N* D-branes
- Dimensionally reduced large-*N* super Yang-Mills might provide a nonperturbative formulation of the string/M-theory
- Connection to black p-branes allows studying black hole thermodynamics through strongly coupled gauge theory:



Motivation

Super Yang-Mills quantum mechanics:

- Interesting physics:
 - testing gauge/gravity duality,
 - thermodynamics of black holes
- Interesting expectations:
 - discrete vs. continuous spectrum (depending on the fermion sector),
 - flat directions
- Interesting 'bosonisation':
 - fermion contribution decomposes into fermion sectors,
 - allows for a local fermion algorithm,
 - structure is the same as for QCD!

Continuum Model

- Start from $\mathcal{N}=1$ SYM in d=4 (or 10) dimensions
- Dimensionally reduce to 1-dim. $\mathcal{N}=4$ (or 16) SYM QM:

$$S = \frac{1}{g^2} \int_0^\beta dt \operatorname{Tr}\left\{ (D_t X_i)^2 - \frac{1}{2} \left[X_i, X_j \right]^2 + \overline{\psi} D_t \psi - \overline{\psi} \sigma_i \left[X_i, \psi \right] \right\}$$

- covariant derivative $D_t = \partial_t i[A(t), \cdot]$,
- time component of the gauge field A(t),
- spatial components become bosonic fields $X_i(t)$ with i = 1, ..., d 1,
- anticommuting fermion fields $\overline{\psi}(t), \psi(t)$,
- σ_i are the γ -matrices in d dimensions
- all fields in the adjoint representation of SU(N)

Continuum Model

- Start from $\mathcal{N} = 1$ SYM in d = 4 (or 10) dimensions
- Dimensionally reduce to 1-dim. $\mathcal{N} = 4$ (or 16) SYM QM:

$$S = \frac{1}{g^2} \int_0^\beta dt \operatorname{Tr}\left\{ (D_t X_i)^2 - \frac{1}{2} \left[X_i, X_j \right]^2 + \overline{\psi} D_t \psi - \overline{\psi} \sigma_i \left[X_i, \psi \right] \right\}$$

- covariant derivative $D_t = \partial_t i[A(t), \cdot]$,
- time component of the gauge field A(t),
- spatial components become bosonic fields $X_i(t)$ with i = 1, 2, 3 (for $\mathcal{N} = 4$),
- anticommuting fermion fields ψ(t), ψ(t), (complex 2-component spinors for N = 4)
- σ_i are the γ -matrices in d dimensions (Pauli matrices for $\mathcal{N} = 4$)
- all fields in the adjoint representation of SU(N)

Lattice regularisation

• Discretise the bosonic part:

$$S_B = \frac{1}{g^2} \sum_{t=0}^{L_t-1} \operatorname{Tr} \left\{ D_t X_i(t) D_t X_i(t) - \frac{1}{2} \left[X_i(t), X_j(t) \right]^2 \right\}$$

with $D_t X_i(t) = U(t) X_i(t+1) U^{\dagger}(t) - X_i(t)$

• Use Wilson term for the fermionic part,

$$S_F = \frac{1}{g^2} \sum_{t=0}^{L_t-1} \operatorname{Tr} \left\{ \overline{\psi}(t) D_t \psi(t) - \overline{\psi}(t) \sigma_i \left[X_i(t), \psi(t) \right] \right\} \,,$$

since

$$\partial^{\mathcal{W}} = \frac{1}{2} (\nabla^+ + \nabla^-) \pm \frac{1}{2} \nabla^+ \nabla^- \quad \stackrel{d=1}{\Longrightarrow} \quad \nabla^{\pm}$$

Lattice regularisation and reduced determinant

• Specifically, we have

$$S_{F} = \frac{1}{2g^{2}} \sum_{t=0}^{L_{t}-1} \left[-\overline{\psi}_{\alpha}^{a}(t) W_{\alpha\beta}^{ab}(t) e^{+\mu L_{t}} \psi_{\beta}^{b}(t+1) + \overline{\psi}_{\alpha}^{a}(t) \Phi_{\alpha\beta}^{ac}(t) \psi_{\beta}^{c}(t) \right]$$

where $W^{ab}_{\alpha\beta}(t) = 2\delta_{\alpha\beta} \otimes \text{Tr}\{T^{a}U(t)T^{b}U(t)^{\dagger}\}.$

• Φ is a $2(N^2 - 1) \times 2(N^2 - 1)$ Yukawa interaction matrix:

$$\Phi^{ac}_{\alpha\beta}(t) = (\sigma_0)_{\alpha\beta} \otimes \delta^{ac} - 2(\sigma_i)_{\alpha\beta} \otimes \mathsf{Tr}\{T^a[X_i(t), T^c]\}$$

• Dimensional reduction of determinant at finite density $\mu \neq 0$:

$$\det \mathcal{D}_{\rho,a}[U,X_i;\mu] = \det \left[\prod_{t=0}^{L_t-1} \Phi(t)W(t) \mp \frac{e^{+\mu L_t}}{e^{+\mu L_t}}\right]$$

Fugacity expansion

• Dimensional reduction of determinant gives: (for finite density $\mu \neq 0$)

$$\det \mathcal{D}_{\rho,a}[U,X;\mu] = \det \left[\prod_{t=0}^{L_t-1} \Phi(t)W(t) \mp e^{+\mu L_t}\right]$$

• Fugacity expansion is easy:

$$\det \mathcal{D}_{p,a}[U,X_i;\mu] = \sum_{n_f=0}^{2(N^2-1)} (\mp e^{\mu L_t})^{n_f} \det \mathcal{D}_{n_f}[U,X_i]$$

- diagonalise $\mathcal{T} \equiv \prod_{t=0}^{L_t-1} \Phi(t) W(t) \rightarrow \text{eigenvalues } \{\tau_i\}$
- calculate coefficients of the characteristic polynomial:

$$\det \mathcal{D}_{p,a}[U,X_i;\mu] = \prod_{j=1}^{2(N^2-1)} \left(\tau_j \mp e^{\mu L_t}\right)$$

Fugacity expansion and transfer matrices

 Canonical determinants are expressed in terms of elementary symmetric functions S_k of order k of {τ_i}:

$$\det \mathcal{D}_{n_f}[U, X_i] = S_{n_f^{\max} - n_f}(\mathcal{T})$$

where

$$\mathcal{S}_k(\mathcal{T}) \equiv \mathcal{S}_k(\{ au_i\}) = \sum_{1 \leq i_1 < \cdots < i_k \leq n_f^{\max}} \prod_{j=1}^k au_{i_j}.$$

Crucial object:

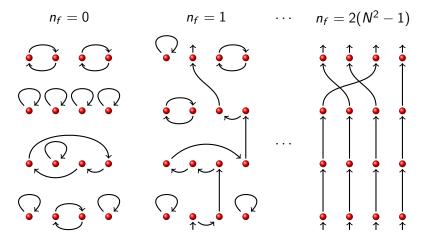
$$\mathcal{T}\equiv\prod_{t=0}^{L_t-1}\Phi(t)W(t) \quad \Leftrightarrow \quad ext{ product of transfer matrices }$$

• Proof via fermion loop formulation:

 \Rightarrow explicit construction in each fermion sector

Fermion loop formulation \Leftrightarrow hopping expansion to all orders

 Configurations can be classified according to the number of propagating fermions n_f:



Transfer matrices

• Propagation of fermions described by transfer matrices:

 $T^{\Phi}_{n_f}(t) \Rightarrow$ sums up local vacuum contibutions, $T^{W}_{n_f}(t) \Rightarrow$ projects onto gauge invariant states

Explicitly:

$$(T^{\Phi}_{n_{f}})_{AB} = (-1)^{p(A,B)} \det \Phi^{B^{A}}$$
 cofactor $C_{B^{A}}(\Phi)$
 $(T^{W}_{n_{f}})_{AB} = \det W^{AB}$ minor $M_{AB}(W)$

• Size of $T_{n_f}^{\Phi,W}$ is given by $N_{\text{states}} = n_f^{\max}!/(n_f^{\max} - n_f)! \cdot n_f!$

• Fermion contribution to the partition function is simply

$$\det \mathcal{D}_{n_f}[U, X_i] = \mathsf{Tr}\left[\prod_{t=0}^{L_t-1} \mathcal{T}^{\Phi}_{n_f}(t) \cdot \mathcal{T}^{W}_{n_f}(t)\right]$$

Transfer matrices and canonical determinants

• Fermion contribution to the partition function is simply

$$\det \mathcal{D}_{n_f}[U, X_i] = \mathsf{Tr}\left[\prod_{t=0}^{L_t-1} T^{\Phi}_{n_f}(t) \cdot T^{W}_{n_f}(t)\right]$$

• Use Cauchy-Binet formula (and some algebra):

$$\left(\prod_{t=0}^{L_t-1} \left[\mathcal{T}^{\Phi}_{n_f}(t) \cdot \mathcal{T}^{W}_{n_f} \right] \right)_{AB} = (-1)^{p(A,B)} \det \mathcal{T}^{AB} = C_{AB}(\mathcal{T})$$

Sum over principal minors:

$$\det \mathcal{D}_{n_f}[U, X_i] = \sum_B \det \mathcal{T}^{\mathcal{R}\mathcal{R}} \equiv E_{n_f}(\mathcal{T}).$$

• Finally one can proof by linear algebra

$$E_{n_f}(\mathcal{T}) = S_{n_f^{\max} - n_f}(\mathcal{T}).$$

Summary

• Canonical determinants are directly given by transfer matrices

$$\det \mathcal{D}_{n_f}[U, X_i] = \operatorname{Tr}\left[\prod_{t=0}^{L_t-1} \mathcal{T}^{\Phi}_{n_f}(t) \cdot \mathcal{T}^{W}_{n_f}(t)\right] = \sum_{B} \det \mathcal{T}^{R_i}$$

constructed from reduced matrix

$$\mathcal{T}\equiv\prod_{t=0}^{L_t-1}\Phi(t)W(t)$$
 .

- Proof is applicable to QCD, algebraic structure is the same!
- Remarks:
 - \mathcal{T} describes the dimensionally reduced effective action for W,
 - our result allows for local fermion algorithm,
 - allows canonical simulations at fixed n_f .

- Canonical determinants are real: det D_{n_f}[U, X_i] = det D_{n_f}[U, X_i]*
- Furthermore, for $n_f = 0$ and $n_f = n_f^{\max}$ (quenched):

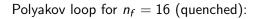
 $\det \mathcal{D}_{n_f}[U, X_i] \ge 0 \quad \text{positive}$

- Charge conjugation ensures symmetry between sectors:
 - broken by the Wilson discretisation,
 - restored in the continuum.
- Simulations for N = 3 with $n_f^{\text{max}} = 2(N^2 1) = 16$:
 - SU(3) adjoint \Rightarrow sectors $n_f = \{0, 1, \dots, 16\}$
- Measure moduli of Polyakov loop and scalar field:

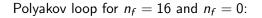
$$P = \left| \operatorname{Tr}_F \left[\prod_t U(t) \right] \right|, \qquad R^2 \equiv |X|^2 = X_i^a X_i^a$$

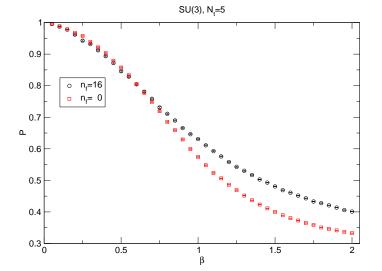
SU(3), N_t=5

Canonical simulations at fixed n_f

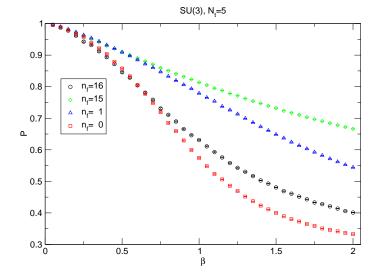


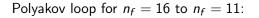
0.9 n_f=16 0.8 0 0.7 ۲ 0.6 0.5 e_ee ⊖ 0 0.4 0.3 L 0.5 1.5 2 1 β

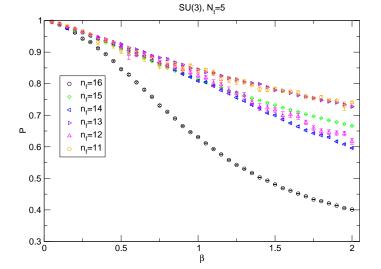


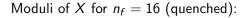


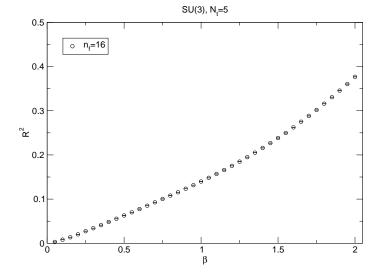
Polyakov loop for $n_f = 16, 15$ and $n_f = 0, 1$:

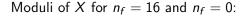


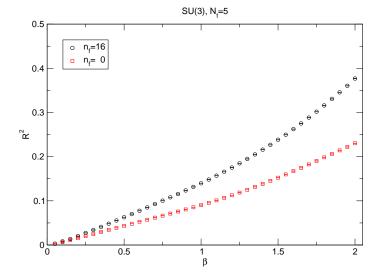


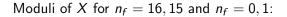


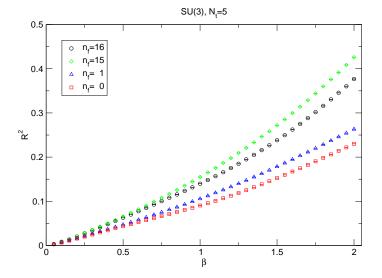




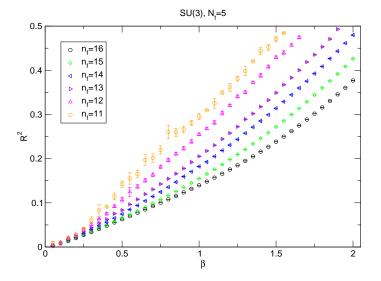




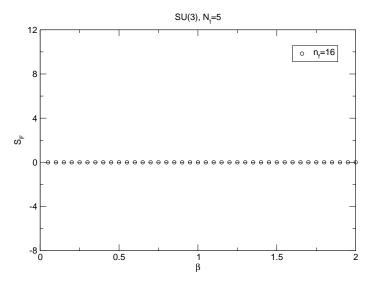




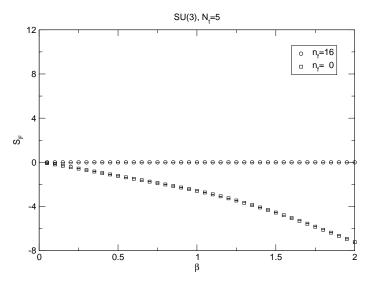




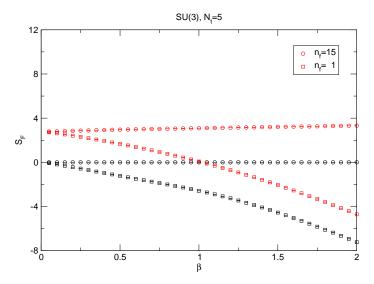
Fermion action $S_F = \langle \ln \det D_{n_f} \rangle_{n_f}$ for $n_f = 16$ (quenched):



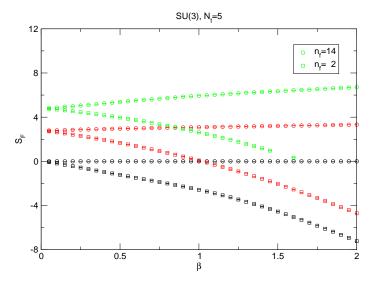
Fermion action $S_F = \langle \ln \det \mathcal{D}_{n_f} \rangle_{n_f}$ for $n_f = 16$ and $n_f = 0$:



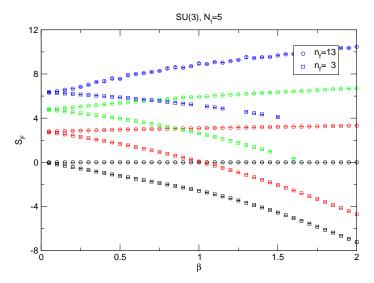
Fermion action $S_F = \langle \ln \det \mathcal{D}_{n_f} \rangle_{n_f}$ for $n_f = 15$ and $n_f = 1$:



Fermion action $S_F = \langle \ln \det \mathcal{D}_{n_f} \rangle_{n_f}$ for $n_f = 14$ and $n_f = 2$:



Fermion action $S_F = \langle \ln \det \mathcal{D}_{n_f} \rangle_{n_f}$ for $n_f = 13$ and $n_f = 3$:



Summary and Outlook

• Canonical determinants are directly given by transfer matrices

$$\det \mathcal{D}_{n_f}[U, X_i] = \operatorname{Tr}\left[\prod_{t=0}^{L_t-1} \mathcal{T}^{\Phi}_{n_f}(t) \cdot \mathcal{T}^{W}_{n_f}(t)\right] = \sum_{\mathcal{B}} \det \mathcal{T}^{\mathcal{R}\mathcal{R}}$$

constructed from reduced matrix

$$\mathcal{T}\equiv\prod_{t=0}^{L_t-1}\Phi(t)W(t)\,.$$

- Opens the way to investigate:
 - correlation functions, spectra, phase transition,...
 - large-N limit,
 - $\mathcal{N}=16$ SYM QM and black hole thermodynamics,
 - reweighting, finite density,...