
Introduction Transfer Matrices and Canonical Determinants Canonical simulations

Canonical simulations of Supersymmetric
Yang-Mills Quantum Mechanics

Georg Bergner, Hang Liu and Urs Wenger

Albert Einstein Center for Fundamental Physics
University of Bern

based on
JHEP 1412 (2014) 044 [arXiv:1410.0235]

(with Kyle Steinhauer)

Lattice 2015, 18/07/2015, Kobe, Japan



Introduction Transfer Matrices and Canonical Determinants Canonical simulations

Dualities, black holes and all that

Gauge/gravity duality conjecture:

U(N) gauge theories as a low energy effective theory of N
D-branes

Dimensionally reduced large-N super Yang-Mills might provide
a nonperturbative formulation of the string/M-theory

Connection to black p-branes allows studying black hole
thermodynamics through strongly coupled gauge theory:

super Yang-Mills
in (p+1)-dim.

IIA/IIB
superstring on
black p-brane
background

Dp-branes in su-
perstring theory

equivalent

closed string
open string
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Motivation

Super Yang-Mills quantum mechanics:

Interesting physics:

testing gauge/gravity duality,
thermodynamics of black holes

Interesting expectations:

discrete vs. continuous spectrum
(depending on the fermion sector),

flat directions

Interesting ’bosonisation’:

fermion contribution decomposes into fermion sectors,
allows for a local fermion algorithm,
structure is the same as for QCD!
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Continuum Model

Start from N = 1 SYM in d = 4 (or 10) dimensions

Dimensionally reduce to 1-dim. N = 4 (or 16) SYM QM:

S =
1

g2

∫ β

0

dt Tr

{
(DtXi )

2 − 1

2
[Xi ,Xj ]

2 + ψDtψ − ψσi [Xi , ψ]

}

covariant derivative Dt = ∂t − i [A(t), ·],
time component of the gauge field A(t),

spatial components become bosonic fields Xi (t) with
i = 1, . . . , d − 1,

anticommuting fermion fields ψ(t), ψ(t),

σi are the γ-matrices in d dimensions

all fields in the adjoint representation of SU(N)
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Continuum Model

Start from N = 1 SYM in d = 4 (or 10) dimensions

Dimensionally reduce to 1-dim. N = 4 (or 16) SYM QM:

S =
1

g2

∫ β

0

dt Tr

{
(DtXi )

2 − 1

2
[Xi ,Xj ]

2 + ψDtψ − ψσi [Xi , ψ]

}

covariant derivative Dt = ∂t − i [A(t), ·],
time component of the gauge field A(t),

spatial components become bosonic fields Xi (t) with
i = 1, 2, 3 (for N = 4),

anticommuting fermion fields ψ(t), ψ(t),
(complex 2-component spinors for N = 4)
σi are the γ-matrices in d dimensions
(Pauli matrices for N = 4)

all fields in the adjoint representation of SU(N)
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Lattice regularisation

Discretise the bosonic part:

SB =
1

g2

Lt−1∑
t=0

Tr

{
DtXi (t)DtXi (t)− 1

2
[Xi (t),Xj(t)]2

}
with DtXi (t) = U(t)Xi (t + 1)U†(t)− Xi (t)

Use Wilson term for the fermionic part,

SF =
1

g2

Lt−1∑
t=0

Tr
{
ψ(t)Dtψ(t)− ψ(t)σi [Xi (t), ψ(t)]

}
,

since

∂W =
1

2
(∇+ +∇−)± 1

2
∇+∇− d=1

=⇒ ∇±
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Lattice regularisation and reduced determinant

Specifically, we have

SF =
1

2g2

Lt−1∑
t=0

[
−ψa

α(t)W ab
αβ(t)e+µLtψb

β(t + 1) + ψ
a

α(t)Φac
αβ(t)ψc

β(t)
]

where W ab
αβ(t) = 2δαβ ⊗ Tr{T aU(t)T bU(t)†}.

Φ is a 2(N2 − 1)× 2(N2 − 1) Yukawa interaction matrix:

Φac
αβ(t) = (σ0)αβ ⊗ δac − 2 (σi )αβ ⊗ Tr{T a[Xi (t),T c ]}

Dimensional reduction of determinant at finite density µ 6= 0:

detDp,a[U,Xi ;µ] = det

[
Lt−1∏
t=0

Φ(t)W (t)∓ e+µLt

]
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Fugacity expansion

Dimensional reduction of determinant gives:
(for finite density µ 6= 0)

detDp,a[U,X ;µ] = det

[
Lt−1∏
t=0

Φ(t)W (t)∓ e+µLt

]

Fugacity expansion is easy:

detDp,a[U,Xi ;µ] =

2(N2−1)∑
nf =0

(∓eµLt )nf detDnf [U,Xi ]

diagonalise T ≡
∏Lt−1

t=0 Φ(t)W (t) → eigenvalues {τi}
calculate coefficients of the characteristic polynomial:

detDp,a[U,Xi ;µ] =

2(N2−1)∏
j=1

(
τj ∓ eµLt

)
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Fugacity expansion and transfer matrices

Canonical determinants are expressed in terms of
elementary symmetric functions Sk of order k of {τi}:

detDnf [U,Xi ] = Snmax
f −nf (T )

where

Sk(T ) ≡ Sk({τi}) =
∑

1≤i1<···<ik≤nmax
f

k∏
j=1

τij .

Crucial object:

T ≡
Lt−1∏
t=0

Φ(t)W (t) ⇔ product of transfer matrices

Proof via fermion loop formulation:

⇒ explicit construction in each fermion sector
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Fermion loop formulation ⇔ hopping expansion to all orders

Configurations can be classified according to the number of
propagating fermions nf :

nf = 0 nf = 1 . . .

. . .

nf = 2(N2 − 1)
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Transfer matrices

Propagation of fermions described by transfer matrices:

TΦ
nf

(t) ⇒ sums up local vacuum contibutions,

TW
nf

(t) ⇒ projects onto gauge invariant states

Explicitly:(
TΦ
nf

)
AB

= (−1)p(A,B) det Φ \B\A cofactor C \B\A(Φ)(
TW
nf

)
AB

= detW AB minor MAB(W )

Size of TΦ,W
nf is given by Nstates = nmax

f !/(nmax
f − nf )! · nf !

Fermion contribution to the partition function is simply

detDnf [U,Xi ] = Tr

[
Lt−1∏
t=0

TΦ
nf (t) · TW

nf (t)

]
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Transfer matrices and canonical determinants

Fermion contribution to the partition function is simply

detDnf [U,Xi ] = Tr

[
Lt−1∏
t=0

TΦ
nf (t) · TW

nf (t)

]

Use Cauchy-Binet formula (and some algebra):(
Lt−1∏
t=0

[
TΦ
nf (t) · TW

nf

])
AB

= (−1)p(A,B) det T \A \B = C \A \B(T )

Sum over principal minors:

detDnf [U,Xi ] =
∑
B

det T \B \B ≡ Enf (T ) .

Finally one can proof by linear algebra

Enf (T ) = Snmax
f −nf (T ) .
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Summary

Canonical determinants are directly given by transfer matrices

detDnf [U,Xi ] = Tr

[
Lt−1∏
t=0

TΦ
nf

(t) · TW
nf

(t)

]
=
∑
B

det T \B \B

constructed from reduced matrix

T ≡
Lt−1∏
t=0

Φ(t)W (t) .

Proof is applicable to QCD, algebraic structure is the same!

Remarks:

T describes the dimensionally reduced effective action for W ,

our result allows for local fermion algorithm,

allows canonical simulations at fixed nf .
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Canonical simulations at fixed nf

Canonical determinants are real: detDnf [U,Xi ] = detDnf [U,Xi ]
∗

Furthermore, for nf = 0 and nf = nmax
f (quenched):

detDnf [U,Xi ] ≥ 0 positive

Charge conjugation ensures symmetry between sectors:

broken by the Wilson discretisation,
restored in the continuum.

Simulations for N = 3 with nmax
f = 2(N2 − 1) = 16:

SU(3) adjoint ⇒ sectors nf = {0, 1, . . . , 16}

Measure moduli of Polyakov loop and scalar field:

P =

∣∣∣∣∣TrF

[∏
t

U(t)

]∣∣∣∣∣ , R2 ≡ |X |2 = X a
i X

a
i
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Canonical simulations at fixed nf

Polyakov loop for nf = 16 (quenched):
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Canonical simulations at fixed nf

Polyakov loop for nf = 16 and nf = 0:
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Canonical simulations at fixed nf

Polyakov loop for nf = 16, 15 and nf = 0, 1:
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Canonical simulations at fixed nf

Polyakov loop for nf = 16 to nf = 11:

0 0.5 1 1.5 2
β

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P

nf=16
nf=15
nf=14
nf=13
nf=12
nf=11

SU(3), Nt=5



Introduction Transfer Matrices and Canonical Determinants Canonical simulations

Canonical simulations at fixed nf

Moduli of X for nf = 16 (quenched):
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Canonical simulations at fixed nf

Moduli of X for nf = 16 and nf = 0:
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Canonical simulations at fixed nf

Moduli of X for nf = 16, 15 and nf = 0, 1:
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Canonical simulations at fixed nf

Moduli of X for nf = 16 to nf = 11:
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Canonical simulations at fixed nf

Fermion action SF = 〈ln det Dnf 〉nf for nf = 16 (quenched):
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Canonical simulations at fixed nf

Fermion action SF = 〈ln det Dnf 〉nf for nf = 16 and nf = 0:
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Canonical simulations at fixed nf

Fermion action SF = 〈ln det Dnf 〉nf for nf = 15 and nf = 1:
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Canonical simulations at fixed nf

Fermion action SF = 〈ln det Dnf 〉nf for nf = 14 and nf = 2:
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Canonical simulations at fixed nf

Fermion action SF = 〈ln det Dnf 〉nf for nf = 13 and nf = 3:
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Summary and Outlook

Canonical determinants are directly given by transfer matrices

detDnf [U,Xi ] = Tr

[
Lt−1∏
t=0

TΦ
nf

(t) · TW
nf

(t)

]
=
∑
B

det T \B \B

constructed from reduced matrix

T ≡
Lt−1∏
t=0

Φ(t)W (t) .

Opens the way to investigate:

correlation functions, spectra, phase transition,...
large-N limit,
N = 16 SYM QM and black hole thermodynamics,
reweighting, finite density,...
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