Chiral phase transition of N_f=3 and 2+1 QCD at μ_B =0

Heng-Tong Ding for the Bielefeld-BNL-CCNU collaboration

Central China Normal University

14-18 July, 2015, Lattice 2015, Kobe, Japan

QCD phase diagram

HTD, F. Karsch, S. Mukherjee, arXiv:1504.0527

QCD phase diagram at $\mu_B=0$

columbia plot:

Second Strain St

 \mathbb{Q} N_f=2(+1): U_A(1) remains broken at T_{χ SB}

JLQCD '13,'14,'15, HotQCD '13,'14

 Critical lines of second order transition Pisarski & Wilczek PRD '84
 Nf=2: O(4) universality class Kogut & Sinclair, PRD '06
 Nf=3: Ising universality class Schmidt PLB '04,...

Towards the chiral limit:

- $N_f=2+1$ QCD: m_s^{tri} ? m_s^{phy}
- N_f=3 QCD: critical mass m_c?

scenarios of QCD phase transition at m_I=0

QCD phase transition at the physical point

Karsch et al., '03, X.-Y. Jin et al., '15, S. Takeda, Tue 15:20-40

Phase transition in the chiral limit

 $N_{f}=2+1$: • standard staggered action: $N_{\tau} = 4 \Rightarrow m_s^{tri} > m_s^{phy}$ de Forcrand & Philipsen, JHEP 0701(2007)077 • p4fat3 action: $N_T = 4 \Rightarrow m_s^{tri} < m_s^{phy}$ S. Ejiri et al., Phys.Rev. D80 (2009) 094505 $N_f=3$: • Standard staggered action: $N_{\tau} = 4 \implies m_{\pi}^{c} \approx 290 \text{ MeV}$ F. Karsch et al., Nucl.Phys.Proc.Suppl. 129 (2004) 614 • Standard staggered action: $N_{\tau} = 6 \implies m_{\pi}^{c} \approx 140 \text{ MeV}$ P. de Forcrand et al, PoS LATTICE2007 (2007) 178 • p4fat3 action: $N_{\tau} = 4 \implies m_{\pi}^{c} \approx 67 \text{ MeV}$ F. Karsch et al., Nucl.Phys.Proc.Suppl. 129 (2004) 614 • stout action: $N_T = 6 \implies m_{\pi}^c \le 50 \text{ MeV}$ G. Endrodi et al., PoS LAT2007 (2007) 228 • HISQ action: $N_{\tau} = 6 \implies m_{\pi} \le 45 \text{ MeV}$ HTD et al., '13 • Wilson-clover fermion: $N_{\tau} = 4,6,8 \Rightarrow m_{\pi}^{c} \approx 304 \text{ MeV}$ X.-Y.Jin et al., Phys.Rev. D91 (2015) 1, 014508 $N_f=2$: • standard staggered action: $N_{\tau} = 4 \Rightarrow I^{st}$ order

D'Elia et al., Phys.Rev. D72 (2005) 114510

• standard staggered action: $N_{\tau} = 6 \Rightarrow 2^{nd}$ order, O(2)

Kogut & Sinclair, Phys.Rev. D73 (2006) 074512

$N_f=2+1$ & $N_f=3$ QCD simulations

HISQ/tree action on Nt=6 lattices m_{s}^{phy} = 20, 27, 40, 60, 80 $m_{\pi} \approx 160, 140, 110, 90, 80 \text{ MeV}$ $M_{\pi}L > 3$ N_f=3: $m_{s}^{phy}/m_{q} = 10,20,30,40,60,80$ m_π ≈230,160,140,110,90,80 MeV 🗹 mπL >3

update results of 1312.0119 and 1302.5740

$N_{f} = 2 + 1$

Volume dependence of chiral observables

volume effects are small in 3 largest volume

• $m_{\pi}L > 4$ is ensured in the following other datasets

 $48^{3}x6$ with m_{π} =80 MeV, $40^{3}x6$ with m_{π} =90 MeV, $32^{3}x6$ with m_{π} =110 MeV, $24^{3}x6$ with m_{π} =160 MeV

Volume dependence of chiral observables

• Mild volume dependence is seen from chiral observables

 No evidence of linear volume scaling as signatures of first order phase transition

chiral phase transition and universal scaling

Behavior of the free energy close to critical lines

 $f(m,T)=h^{1+1/\delta} f_s(z) + f_{reg}(m,T), \qquad z=t/h^{1/\beta\delta}$

h: external field, t: reduced temperature, β , δ : universal critical exponents

 $f_s(z)$: universal scaling function, O(N) etc.

Magnetic Equation of State (MEoS):

 $M = -\partial f_{s}(t,h) / \partial h = h^{1/\delta} f_{G}(z)$

 $f_{X}(z) = h_{0}^{1/\delta}(m_{I}/m_{s})^{1-1/\delta}\partial M/\partial h$

|-|_c

11

chiral phase transition and universal scaling

Behavior of the free energy close to critical lines

 $f(m,T)=h^{1+1/\delta} f_s(z) + f_{reg}(m,T), z=t/h^{1/\beta\delta}$

 $h = \frac{I}{h_0} \frac{m_l}{m_s} = \frac{I}{t_0} \frac{m_l}{m_s}$

 $f_{\chi}(z) = h_0^{1/\delta} (m_l/m_s)^{1-1/\delta} \partial M/\partial h$

h: external field, t: reduced temperature, β , δ : universal critical exponents

 $f_s(z)$: universal scaling function, O(N) etc.

Magnetic Equation of State (MEoS):

 $M = -\partial f_{s}(t,h) / \partial h = h^{1/\delta} f_{G}(z)$

Comparison with QCD

 $M = m_s \langle \bar{\psi}\psi \rangle_l / T^4 , \qquad \chi_M = m_s^2 \chi_{tot} / T^4$

Contributions from the regular term

$$M = h^{1/\delta} f_G(z) + f_{reg} , \qquad f_{reg} = \left(a_0 + a_1 \frac{T - T_c}{T_c}\right) \frac{m_l}{m_s}$$
$$\chi_M = h_0^{-1} h^{1/\delta - 1} f_\chi(z) + f'_{reg}, \quad f'_{reg} = a_0 + a_1 \frac{T - T_c}{T_c}$$

O(2) scaling fit to chiral susceptibilities & condensates

O(2) scaling fit to chiral susceptibilities & condensates

O(2) scaling fit to chiral susceptibilities & condensates

A good fit to chiral observables using O(2) scaling function is obtained Z(2) scaling fit to chiral susceptibilities & condensates

O(2) h = 1/h₀ m_l/m_s

 $h=1/h_0 (m_l-m_c)/m_s$ **Z(2)**

A small and negative value of m_c is favored from fit

Volume dependence of chiral observables

time history of chiral condensate near β_c at lowest quark mass

No double peak structure is observed

Binder cumulants of chiral condensates

$$B_{ar{\psi}\psi}\equivrac{\langle (\deltaar{\psi}\psi)^4
angle}{\langle (\deltaar{\psi}\psi)^2
angle^2}$$

In the crossover region B=3

2nd order transition in the Ising universal class B=1.604

1st order transition B=1

No first order phase transition is observed in the current pion mass window: [80, 230] MeV

estimate of critical mass mc

Summary & Outlook

- We have performed simulations on Nt=6 lattices using HISQ/tree action in N_f=2+1 & 3 QCD at 5 & 6 different values of quark masses.
- We found no evidence of a first order phase transition region in 230 MeV $\lesssim m_{\pi} \lesssim 80$ MeV in Nf=3 QCD
- Critical pion mass is estimated: $m_{\pi} \leq 50 \text{ MeV}$
- A good description of chiral observables in $N_f=2+1$ QCD is provided by the O(2) scaling function
- Our results indicate $m_s^{tric} < m_s^{phy}$

 $\gg N_{\tau}=8$ calculations are on the way

$$N_{f} = 2 + 1$$
:

chiral condensates and disconnected sus.

 $N_f=3$:

chiral condensates & susceptibilities

Nf=3: Binder cumulants of chiral condensates

