## Introduction

- Most hadrons are resonances described by their mass and decay width
- Scattering lengths are fundamental quantities in QCD and ingredients for EFTs and interesting for nuclear physics
- Lattice QCD: Non-perturbative description from first principles
- Scattering a priori defined in continuous Minkowski space and cannot be calculated directly from the lattice [1]
- Use Lüscher Method [2]: Scattering parameters can be calculated from effective mass and energy plateaus of two particles in a box
- Extensions to moving reference frames [3], [4]
- Want to calculate energy levels for multitude of reference frames and irreducible representations of octohedral groups
- Laplacian Heaviside smearing of quark fields [5]
- Eigendecomposition of Laplace matrix and truncation to the first $\boldsymbol{N}_{\nu}$ eigenvectors on each timeslice
- Scaling problem on large lattices
- Stochastical approach: Introduce random vectors, $\rho$, in $\boldsymbol{T}, \boldsymbol{D}$ and $\boldsymbol{V}_{s}$
- Dilution of random vectors, $\boldsymbol{P}^{(b)} \boldsymbol{\rho}$, to reduce variance
- Quark line $\mathcal{Q}$ stochastical estimate for the propagator

$$
\mathcal{Q}=\sum_{b} \boldsymbol{E}\left(\boldsymbol{V}_{s} \boldsymbol{V}_{s}^{\dagger} \boldsymbol{D}^{-1} \boldsymbol{V}_{s} \boldsymbol{P}^{(b)} \rho\left(\boldsymbol{V}_{s} \boldsymbol{P}^{(b)} \rho\right)^{\dagger}\right)
$$

- Save perambulators and randomvectors to disk
- Correlation functions by performing Wick contractions for the desired operators
- Expensive method, but propagators can be stored and reused


## Overview of the used ETMC Ensembles

| name | $\boldsymbol{L}_{\boldsymbol{s}}$ | $\boldsymbol{L}_{\boldsymbol{t}}$ | \#conf | $\boldsymbol{a}[\mathrm{fm}]$ | $\boldsymbol{m}_{\boldsymbol{\pi}}[\mathrm{MeV}]$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| A30.32 | 32 | 64 | 161 | 0.086 | 284 |
| A40.32 | 32 | 64 | 251 | 0.086 | 324 |
| A40.24 | 24 | 48 | 405 | 0.086 | 332 |
| A40.20 | 20 | 48 | 281 | 0.086 | 342 |
| A60.24 | 24 | 48 | 314 | 0.086 | 396 |
| A80.24 | 24 | 48 | 307 | 0.086 | 455 |
| A100.24 | 24 | 48 | 313 | 0.086 | 510 |
| B55.32 | 32 | 64 | 256 | 0.082 | 372 |
| D45.32 | 32 | 64 | 300 | 0.062 | 384 |

All Ensembles are generated by the European Twisted Mass Collaboration [2] with $N_{f}=2+1+1$ Clover-fermions

## Calculation of the phase shift

- We used moving frames with lattices momenta up to $\overrightarrow{\boldsymbol{P}}=(2,0,0)$ in the $\boldsymbol{A}_{1}$-irreducible representation of the octohedral group
- For each moving frame, generalized eigenvalue problem:

$$
C_{2 x 2}\left(t_{2}-t_{1}\right)=\left(\begin{array}{cc}
\left\langle(\pi \pi)\left(t_{1}\right)(\pi \pi)^{\dagger}\left(t_{2}\right)\right\rangle & \left\langle(\pi \pi)\left(t_{1}\right) \rho^{\dagger}\left(t_{2}\right)\right\rangle \\
\left\langle\rho\left(t_{1}\right)(\pi \pi)^{\dagger}\left(t_{2}\right)\right\rangle & \left\langle\rho\left(t_{1}\right) \rho^{\dagger}\left(t_{2}\right)\right\rangle
\end{array}\right)
$$

- with operators
$(\pi \pi)(t)=\left(\bar{u}(t) \gamma_{5} \exp (-i \overrightarrow{\boldsymbol{P}} \overrightarrow{\boldsymbol{x}}) d(t)\right)\left(\bar{u}(t+1) \gamma_{5} \exp (+i \overrightarrow{\boldsymbol{P}} \overrightarrow{\boldsymbol{x}}) d(t+1)\right)$ $(\rho)(t)=\bar{u}(t) \gamma_{i} \exp (-i \vec{P} \overrightarrow{\boldsymbol{x}}) u(t)+\bar{d}(t) \gamma_{i} \exp (-i \vec{P} \overrightarrow{\boldsymbol{x}}) d(t)$
- Quarks in $(\boldsymbol{\pi} \pi)(t)$ on different timeslices to avoid Fierz rearrangement
- Obtain phaseshift from relation

$$
\begin{equation*}
\operatorname{det}\left(e^{2 i \delta_{1}}\left(\mathrm{M}-i_{\mathbb{1}}\right)-\left(\mathrm{M}+i_{\mathbb{1}}\right)\right)=0 \tag{1}
\end{equation*}
$$

- Neglect mixing with higher partial waves
- M analytically from solutions of the generalized eigenvalue problem, pion mass and total momentum of the moving frame


## Conclusion and Future Work

- The preliminary results visually reproduce the expected behavior
- Outliers can be explained by still neglected systematic effects
- 4pt functions $\left\langle(\pi \pi)\left(t_{1}\right)(\pi \pi)^{\dagger}\left(t_{2}\right)\right\rangle$ contain finite size contributions Those "'thermal states"' must be accounted for
- Investigate systematics of phase shift fits
- Generalized eigenvalue problem can be extended by more irreducible representations and perambulators with twisted boundary conditions
$I=1 \pi \pi$ scattering phase shift

$I=1 \pi \pi$ scattering phase shift for the B55 ensemble. The black line is a fit of $\tan \left(\delta_{1}\right)=\frac{g_{\rho \pi \pi}^{2}}{6 \pi} \frac{\sqrt{E_{E M / 4}^{2}-m_{\pi}^{2}}}{E_{C M}\left(m^{2}-E_{L}^{2}\right)}$ mass.


Dependence of the rho mass $r_{0} m_{\rho}$ on the pion mass $r_{0} m_{\pi} . r_{0}$ is the Sommer parameter. The black hexagon is the corresponding PDG value. [7]

Results for $g_{\rho \pi \pi}$


Dependence of the $\rho \rightarrow \pi \pi$ coupling on the pion mass $r_{0} m_{\pi}$. $r_{0}$ is the Sommer parameter. The black hexagon is the corresponding PDG value. [7]

## References

[1] L. Maiani, M. Testa: Phys. Lett. B245 585 (1990)
[2] M. Lüscher: Commun. Math. Phys. 105, 153 (1986)
[3] K. Rummukainen, S. Gottlieb: Nucl. Phys. B450, 397 (1995)
[4] M. Göckeler, et al.: Phys.Rev. D86 (2012)
[5] C. Morningstar et al.: Phys. Rev. D83, 114505 (2011)
[6] R. Baron et al.: PoS LATTICE 2010, 123 (2010) and JHEP 1006, 111 (2010)
[7] K.A. Olive et al. (Particle Data Group): Chin. Phys. C, 38, 090001 (2014)
[8] X. Feng, K. Jansen, D. Renner: Phys. Rev. D83, 094505 (2011)
[9] J. Dudek et al.: Phys.Rev. D87, 034505 (2013)

