Determination of $K \pi$ scattering lengths at physical kinematics

Tadeusz Janowski,
Peter Boyle, Andreas Jüttner, Chris Sachrajda
RBC-UKQCD collaboration SHEP
University of Southampton tj1g11@soton.ac.uk

Lattice 2015, 14 Jul 2015

BNL and RBRC
Tomomi Ishikawa
Taku Izubuchi
Chulwoo Jung
Christoph Lehner Meifeng Lin Shigemi Ohta (KEK)

Taichi Kawanai
Christopher Kelly
Amarjit Soni
Sergey Syritsyn
Columbia University
Ziyuan Bai
Norman Christ Xu Feng
Luchang Jin
Bob Mawhinney
Greg McGlynn
David Murphy
Daiqian Zhang
University of Connecticut
N

York University (Toronto)
Renwick Hudspith

Edinburgh University

Peter Boyle
Luigi Del Debbio Julien Frison Richard Kenway Ava Khamseh Brian Pendleton Oliver Witzel

Azusa Yamaguchi
Southampton University
Jonathan Flynn
Tadeusz Janowski
Andreas Jüttner
Andrew Lawson
Edwin Lizarazo
Antonin Portelli
Chris Sachrajda
Francesco Sanfilippo
Matthew Spraggs
Tobias Tsang
CERN
Marina Marinkovic
Plymouth University
Nicolas Garron

Scattering phase shifts

For a system with two (pseudo)scalar particles, the S-matrix in centre-of-mass frame can be written in partial wave basis as:

$$
\left\langle E^{\prime}, p^{\prime}, I^{\prime}, m^{\prime}\right| S|E, 0, I, m\rangle=\delta\left(E^{\prime}-E\right) \delta(p) \delta_{l / \prime} \delta_{m m^{\prime}} S_{l}(E)
$$

which is required by Lorentz invariance of the S-matrix, specifically $[H, S]=0,[P, S]=0,\left[J^{2}, S\right]=0,\left[J_{3}, S\right]=0$ and $\left[J_{ \pm}, S\right]=0$. Furthermore, unitarity of the S-matrix implies $S^{\dagger} S=S S^{\dagger}=1$ gives

$$
S_{l}(E)=e^{2 i \delta_{l}(E)}
$$

This means that the two (pseudo)scalar particle scattering can be expressed in terms of a single real parameter $\delta_{l}(E)$ called the phase shift.

Scattering length

At low energies (or equivalently momenta, k), phase shifts have the following threshold behaviour:

$$
\delta_{l}(k) \sim k^{\prime+1}
$$

- The dominant contribution will come from the s-wave $(I=0)$.
- We can define a constant called the scattering length:

$$
\left(\tan \delta_{0}(k) / k\right)^{-1}=\frac{1}{a_{0}}+\frac{r_{\text {eff }}}{2} k^{2}+\mathcal{O}\left(k^{4}\right)
$$

$K \pi$ scattering

With $m_{u}=m_{d} \equiv m_{u d}$ and QCD interactions only, isospin becomes a good quantum number.
Pions have $I=1$, kaons have $I=1 / 2$, so $K \pi$ can be in $I=3 / 2$ or $I=1 / 2$ state. Specifically:

$$
\begin{aligned}
& \left|I=3 / 2 ; I_{z}=3 / 2\right\rangle=\left|K^{+} \pi^{+}\right\rangle \\
& \left|I=3 / 2 ; I_{z}=1 / 2\right\rangle=\frac{1}{\sqrt{3}}\left|K^{0} \pi^{+}\right\rangle+\sqrt{\frac{2}{3}}\left|K^{+} \pi^{0}\right\rangle \\
& \left|I=3 / 2 ; I_{z}=-1 / 2\right\rangle=\frac{1}{\sqrt{3}}\left|K^{+} \pi^{-}\right\rangle+\sqrt{\frac{2}{3}}\left|K^{0} \pi^{0}\right\rangle \\
& \left|I=3 / 2 ; I_{z}=-3 / 2\right\rangle=\left|K^{0} \pi^{-}\right\rangle \\
& \left|I=1 / 2 ; I_{z}=1 / 2\right\rangle=\frac{1}{\sqrt{3}}\left|K^{+} \pi^{0}\right\rangle-\sqrt{\frac{2}{3}}\left|K^{0} \pi^{+}\right\rangle \\
& \left|I=1 / 2 ; I_{z}=-1 / 2\right\rangle=-\frac{1}{\sqrt{3}}\left|K^{0} \pi^{0}\right\rangle+\sqrt{\frac{2}{3}}\left|K^{+} \pi^{-}\right\rangle
\end{aligned}
$$

Experimental input

- Experimentally $K \pi$ phase shifts are determined from kaon-nucleon scattering by extrapolating to small transverse momentum
- The experimental input is most accurate at $\mathrm{E}>1 \mathrm{GeV}$
- Roy-Steiner eqations are used to calculate phase shifts at different energies ${ }^{1}$
- Low energy input (scattering lengths) can help to reduce the uncertainties in the dispersion relations.
${ }^{1}$ P. Büttiker et. al. Eur.Phys.J. C33 (2004) 409-432

Results so far

	$a_{0}^{3 / 2} m_{\pi}$	$a_{0}^{1 / 2} m_{\pi}$
Büttiker et. al.	$-0.0448(77)$	$0.224(22)$
$\mathcal{O}\left(p^{4}\right)$ ChPT	$-0.05(2)$	$0.19(2)$
NPLQCD 2	$-0.0574(16)\binom{+24}{-58}$	$0.1725(13)\binom{+23}{-156}$
Fu 3	$-0.0512(18)$	$0.1819(35)$
PACS-CS 4	$-0.0602(31)(26)$	$0.183(18)(35)$

Calculation also done by Lang et. al. ${ }^{5}$, but without extrapolation to physical point.
This work: evaluation of scattering length directly at physical point.
For a recent ChPT calculation see talks by David Murphy and Robert Mawhinney (Thursday, 10:40-11:20).

${ }^{2}$ S. R. Beane et al. , Phys. Rev. D 74 (2006) 114503
${ }^{3}$ Z. Fu, Phys. Rev. D 85 (2012) 074501
${ }^{4}$ Kiyoshi Sasaki (Tokyo Inst. Tech.) et al. , Phys.Rev. D89 (2014) 054502
${ }^{5}$ C. B. Lang et. al. , Phys . Rev. D 86 (2012) 054508

In infinite volume, the two meson energies can be visualised on the complex energy plane as a branch cut starting at $m_{1}+m_{2}$. In finite volume this is replaced by series of poles.

Position of these poles can are related to the s-wave phase shifts by Lüscher's condition ${ }^{6}$:

$$
\delta(k)+\phi(k)=n \pi
$$

where $\phi(k)$ is a known function of the momentum k. This formula is valid below inelastic threshold.
${ }^{6}$ M. Lüscher, Nucl. Phys. B354 (1991) 531-578

$$
\begin{aligned}
C_{K \pi}^{\prime i j}(t) & \equiv\left\langle O_{K_{\pi}}^{i \dagger}(t) O_{K \pi}^{j}(0)\right\rangle \\
& =\operatorname{Tr}\left(e^{-H(T-t)} O_{K \pi}^{\dagger i} e^{-H t} O_{K \pi}^{j}\right) / \operatorname{Tr}\left(e^{-H T}\right) \\
& \stackrel{t \rightarrow \infty}{T \rightarrow \infty}\langle 0| O_{K \pi}^{i t}|K \pi\rangle\langle K \pi| O_{K \pi}^{j}|0\rangle e^{-E_{K \pi} t} \\
& O_{K \pi}^{ \pm}(t)=\left(\bar{s} \gamma^{5} l\right)(t \pm \delta)\left(\bar{I} \gamma^{5} l\right)(t) .
\end{aligned}
$$

Such operators have good overlap with $K \pi$ states and poor overlap with resonant states (e.g. $k)^{7}$.

[^0]$$
D_{y} S(x, y)=\eta(x)
$$

- We use $\eta(x)=\frac{1}{\sqrt{2}}(\operatorname{rand}(\pm 1 \pm i))$
- Quark and antiquark propagator with the same source averaged over 'hits', $\psi_{\eta}(x) \equiv \eta(x) \psi(x)$:

$$
\sum_{x_{1}, x_{2}}\left\langle\bar{\psi}_{\eta}\left(x_{1}\right) \psi_{\eta}\left(x_{2}\right)\right\rangle_{\eta}=\sum_{x} \bar{\psi}(x) \psi(x)
$$

- In practice one 'hit' is enough (time + gauge averaging)

Propagator sources 2
If we use two quark and two antiquark propagators with the same source:

$$
\begin{aligned}
\sum_{x_{1}, x_{2}, x_{3}, x_{4}}\left\langle\bar{\psi}_{\eta}\left(x_{1}\right) \psi_{\eta}\left(x_{2}\right) \bar{\psi}_{\eta}\left(x_{3}\right) \psi_{\eta}\left(x_{4}\right)\right\rangle_{\eta} & =\underbrace{\sum_{x, y} \bar{\psi}(x) \psi(x) \bar{\psi}(y) \psi(y)}_{\text {physical }} \\
& +\underbrace{\sum_{x, y} \bar{\psi}(x) \psi(y) \bar{\psi}(y) \psi(x)}_{\text {gauge dependent }}
\end{aligned}
$$

Possible solutions:
(1) Ignore - second term vanishes under gauge average, but additional noise.
(2) Use two different noise sources η_{1} and η_{2} for each meson, but additional inversions.
(3) Separate sources in time.

$K \pi \mathrm{I}=3 / 2$ contractions

$$
\begin{aligned}
& D=\operatorname{Tr}\left(S^{\dagger}(t ; \delta) L(t ; \delta)\right) \operatorname{Tr}\left(L(t+\delta ; 0)^{\dagger} L(t+\delta ; 0)\right) \\
& C=\operatorname{Tr}\left(S^{\dagger}(t ; \delta) L(\delta ; 0) L^{\dagger}(t+\delta ; 0) L(t+\delta ; \delta)\right)
\end{aligned}
$$

$$
C_{K \pi}^{1=3 / 2}(t)=D-C
$$

Rectangle graph for $\mathrm{I}=1 / 2$ correlator

Around-the-world effects

$$
\operatorname{Tr}\left(e^{-H\left(T-t_{1}\right)} O_{K \pi}^{\dagger i} e^{-H\left(t_{1}-t_{2}\right)} O_{K \pi}^{j}\right) / \operatorname{Tr}\left(e^{-H T}\right)
$$

$$
\begin{aligned}
C_{K \pi}(t) & =|\langle K \pi| \pi(\delta) K(0)| 0\rangle\left.\right|^{2} e^{-E_{K \pi}(t+\delta)} \\
& +|\langle 0| \pi(\delta) K(0)| K \pi\rangle\left.\right|^{2} e^{-E_{K \pi}(T-t-\delta)} \\
& +|\langle K| \pi(\delta) K(0)| \pi\rangle\left.\right|^{2} e^{-m_{\pi}(T-t-\delta)} e^{-m_{K}(t+\delta)} \\
& +|\langle\pi| \pi(\delta) K(0)| K\rangle\left.\right|^{2} e^{-m_{K}(T-t-\delta)} e^{-m_{\pi}(t+\delta)} \\
& +\ldots
\end{aligned}
$$

Method 2-3-parameter fit

$$
\begin{aligned}
C_{K \pi}(t) & =|\langle K \pi| \pi(\delta) K(0)| 0\rangle\left.\right|^{2} e^{-E_{K \pi}(t+\delta)} \\
& +|\langle 0| \pi(\delta) K(0)| K \pi\rangle\left.\right|^{2} e^{-E_{K \pi}(T-t-\delta)} \\
& +|\langle K| \pi(\delta) K(0)| \pi\rangle\left.\right|^{2} e^{-m_{\pi}(T-t-\delta)} e^{-m_{K}(t+\delta)} \\
& +|\langle\pi| \pi(\delta) K(0)| K\rangle\left.\right|^{2} e^{-m_{K}(T-t-\delta)} e^{-m_{\pi}(t+\delta)} \\
& +\ldots
\end{aligned}
$$

Lattice size	$48^{3} \times 96$	$64^{3} \times 128$
Gauge action	Iwasaki	Iwasaki
Fermion action	Möbius DWF	Möbius DWF
β	2.13	2.25
$a m_{s}$	0.0362	0.02661
$a m_{I}$	0.00078	0.000378
No. of configs	88	80
$a^{-1}[\mathrm{GeV}]$	$1.730(4)$	$2.359(7)$
$\mathrm{L}[\mathrm{fm}]$	$5.476(12)$	$5.354(16)$
$m_{\pi}[\mathrm{MeV}]$	$139.2(2)$	$139.3(3)$
$m_{K}[\mathrm{MeV}]$	$499.2(2)$	$507.9(4)$
$m_{\pi} L$	$3.863(6)$	$3.778(8)$

- quark sources every second time slice on 48^{3}, every fourth on 64^{3}
- antiperiodic boundary conditions in time direction only

3-point functions

$\pi \rightarrow K$ and $K \rightarrow \pi$ matrix elements can be calculated in an alternative way using the following correlation functions:

$$
\begin{aligned}
C_{K \rightarrow \pi}(t) & =\langle\pi(\Delta) \pi(t+\delta) K(t) K(0)\rangle \\
& =\langle 0| O_{\pi}|\pi\rangle\langle\pi| O_{K \pi}|K\rangle\langle K| O_{K}|0\rangle e^{-m_{\pi}(\Delta-t)} e^{-m_{K} t} \\
& +\langle\pi| O_{\pi}|0\rangle\langle 0| O_{K \pi}|K \pi\rangle\langle K \pi| K|\pi\rangle e^{-m_{\pi}(T-\Delta)} e^{-E_{K \pi} t} \\
& +\ldots,
\end{aligned}
$$

$\pi \rightarrow K$ matrix element calculated in an analogous way.

Continuum extrapolation

Continuum extrapolation revisited:

$a_{0} m_{\pi}$	48^{3}	64^{3}	continuum
$\mathrm{I}=3 / 2$	$-0.068(8)$	$-0.068(7)$	$-0.07(2)$
$\mathrm{I}=1 / 2$	$0.16(1)$	$0.16(1)$	$0.16(3)$
$\mathrm{I}=3 / 2$	$-0.063(8)$	$-0.059(5)$	$-0.06(1)$
$\mathrm{I}=1 / 2$	$0.178(9)$	$0.170(9)$	$0.16(2)$

Comparison

	$a_{0}^{3 / 2} m_{\pi}$	$a_{0}^{1 / 2} m_{\pi}$
Büttiker et. al.	$-0.0448(77)$	$0.224(22)$
$\mathcal{O}\left(p^{4}\right)$ ChPT	$-0.05(2)$	$0.19(2)$
NPLQCD	$-0.0574(16)\binom{+24}{-58}$	$0.1725(13)\binom{+23}{-156}$
Fu	$-0.0512(18)$	$0.1819(35)$
PACS-CS	$-0.0602(31)(26)$	$0.183(18)(35)$
RBC-UKQCD (5p)	$-0.07(2)$	$0.16(3)$
(preliminary)		
RBC-UKQCD (3p)	$-0.06(1)$	$0.16(2)$
(preliminary)		

Comparison

Conclusions

- We are able to generate ensembles with physical pion and kaon masses.
- Calculation of $K \pi$ energies at low values of $m_{\pi} T$ and $m_{K} T$ suffers from significant around-the world effects.
- Around-the-world effects can be treated reliably using a 5-parameter fit...
- ...and even more reliably by including $K \rightarrow \pi$ and $\pi \rightarrow K$ matrix elements.
- First calculation of scattering lengths that does not rely on chiral perturbation theory.
- Although low statistics prevent us from obtaining an accurate $I=3 / 2$ result, we can get a good estimate for $I=1 / 2$, which has been dominated by $\chi P T$ errors in previous calculations.

Thank you for your attention!

Chiral extrapolation

Plots taken from Lang et. al. Phys.Rev. D86 (2012) 054508.

[^0]: ${ }^{7}$ Kiyoshi Sasaki (Tokyo Inst. Tech.) et al. [PACS-CS Collaboration], Phys.Rev. D89 (2014) 054502

