Determination of $K\pi$ scattering lengths at physical kinematics

Tadeusz Janowski, Peter Boyle, Andreas Jüttner, Chris Sachrajda

RBC-UKQCD collaboration SHEP University of Southampton tj1g11@soton.ac.uk

Lattice 2015, 14 Jul 2015

イロト 不得 トイヨト イヨト 二日

BNL and RBRC Tomomi Ishikawa Taku Izubuchi Chulwoo Jung Christoph Lehner Meifeng Lin Shigemi Ohta (KEK) Taichi Kawanai Christopher Kelly Amariit Soni Sergey Syritsyn **Columbia University** Ziyuan Bai Norman Christ Xu Feng Luchang Jin Bob Mawhinney Greg McGlynn David Murphy Daigian Zhang University of Connecticut Tom Blum York University (Toronto) Renwick Hudspith

Α

Т

L

Α

N

т

C

0

С

Е

A

Ν

Edinburgh University

Peter Boyle Luigi Del Debbio Julien Frison Richard Kenway Ava Khamseh Brian Pendleton Oliver Witzel

Azusa Yamaguchi

Southampton University

Jonathan Flynn Tadeusz Janowski Andreas Jüttner Andrew Lawson Edwin Lizarazo Antonin Portelli Chris Sachrajda Francesco Sanfilippo Matthew Spraggs

> Tobias Tsang CERN

Marina Marinkovic

Plymouth University

Nicolas Garron 🖡 👔 🔊 🖉

For a system with two (pseudo)scalar particles, the S-matrix in centre-of-mass frame can be written in partial wave basis as:

$$\langle E', p', l', m' \mid S \mid E, 0, l, m \rangle = \delta(E' - E)\delta(p)\delta_{ll'}\delta_{mm'}S_l(E)$$

which is required by Lorentz invariance of the S-matrix, specifically [H, S] = 0, [P, S] = 0, $[J^2, S] = 0$, $[J_3, S] = 0$ and $[J_{\pm}, S] = 0$. Furthermore, unitarity of the S-matrix implies $S^{\dagger}S = SS^{\dagger} = 1$ gives

$$S_l(E) = e^{2i\delta_l(E)}$$

This means that the two (pseudo)scalar particle scattering can be expressed in terms of a single real parameter $\delta_l(E)$ called the *phase shift*.

At low energies (or equivalently momenta, k), phase shifts have the following threshold behaviour:

$$\delta_l(k) \sim k^{l+1}$$

- The dominant contribution will come from the s-wave (I = 0).
- We can define a constant called the *scattering length*:

$$(\tan \delta_0(k)/k)^{-1} = \frac{1}{a_0} + \frac{r_{eff}}{2}k^2 + \mathcal{O}(k^4)$$

$K\pi$ scattering

With $m_u = m_d \equiv m_{ud}$ and QCD interactions only, isospin becomes a good quantum number.

Pions have I = 1, kaons have I = 1/2, so $K\pi$ can be in I = 3/2 or I = 1/2 state. Specifically:

$$\begin{split} |I &= 3/2; I_z = 3/2 \rangle = |K^+ \pi^+ \rangle \\ |I &= 3/2; I_z = 1/2 \rangle = \frac{1}{\sqrt{3}} |K^0 \pi^+ \rangle + \sqrt{\frac{2}{3}} |K^+ \pi^0 \rangle \\ |I &= 3/2; I_z = -1/2 \rangle = \frac{1}{\sqrt{3}} |K^+ \pi^- \rangle + \sqrt{\frac{2}{3}} |K^0 \pi^0 \rangle \\ |I &= 3/2; I_z = -3/2 \rangle = |K^0 \pi^- \rangle \\ |I &= 1/2; I_z = 1/2 \rangle = \frac{1}{\sqrt{3}} |K^+ \pi^0 \rangle - \sqrt{\frac{2}{3}} |K^0 \pi^+ \rangle \\ |I &= 1/2; I_z = -1/2 \rangle = -\frac{1}{\sqrt{3}} |K^0 \pi^0 \rangle + \sqrt{\frac{2}{3}} |K^+ \pi^- \rangle \end{split}$$

- Experimentally $K\pi$ phase shifts are determined from kaon-nucleon scattering by extrapolating to small transverse momentum
- $\bullet\,$ The experimental input is most accurate at E>1 GeV
- Roy-Steiner eqations are used to calculate phase shifts at different energies ¹
- Low energy input (scattering lengths) can help to reduce the uncertainties in the dispersion relations.

¹P. Büttiker *et. al.* Eur.Phys.J. C33 (2004) 409-432→ (♂→ (≧→ (≧→ (≧→))

Results so far

	$a_0^{3/2} m_{\pi}$	$a_0^{1/2} m_{\pi}$
Büttiker et. al.	-0.0448(77)	0.224(22)
$\mathcal{O}(p^4)$ ChPT	-0.05(2)	0.19(2)
NPLQCD ²	$-0.0574(16)\left(egin{array}{c} +24 \ -58 \end{array} ight)$	$0.1725(13)\left(egin{array}{c} +23\ -156 \end{array} ight)$
Fu ³	-0.0512(18)	0.1819(35)
PACS-CS ⁴	-0.0602(31)(26)	0.183(18)(35)

Calculation also done by Lang et. al. ⁵, but without extrapolation to physical point.

This work: evaluation of scattering length **directly at physical point**.

For a recent ChPT calculation see talks by **David Murphy and Robert Mawhinney (Thursday, 10:40-11:20)**.

- ⁴Kiyoshi Sasaki (Tokyo Inst. Tech.) et al. , Phys.Rev. D89 (2014) 054502

²S. R. Beane et al. , Phys. Rev. D 74 (2006) 114503

³Z. Fu, Phys. Rev. D 85 (2012) 074501

S-wave phase shifts from a lattice - Lüscher's formula

In infinite volume, the two meson energies can be visualised on the complex energy plane as a branch cut starting at $m_1 + m_2$. In finite volume this is replaced by series of poles.

Position of these poles can are related to the s-wave phase shifts by Lüscher's condition 6 :

$$\delta(k) + \phi(k) = n\pi$$

where $\phi(k)$ is a known function of the momentum k. This formula is valid below inelastic threshold.

⁶M. Lüscher, Nucl. Phys. B354 (1991) 531-578 🖪 🖬 🖉 🖉 🖉 🖉 🖉

Two meson correlation function - choice of interpolators

$$\begin{split} C_{K\pi}^{\prime ij}(t) &\equiv \langle O_{K\pi}^{i\dagger}(t) O_{K\pi}^{j}(0) \rangle \\ &= \operatorname{Tr} \left(e^{-H(T-t)} O_{K\pi}^{\dagger i} e^{-Ht} O_{K\pi}^{j} \right) / \operatorname{Tr} \left(e^{-HT} \right) \\ &\xrightarrow[T \to \infty]{} \langle 0 \mid O_{K\pi}^{i\dagger} \mid K\pi \rangle \langle K\pi \mid O_{K\pi}^{j} \mid 0 \rangle e^{-E_{K\pi}t} \end{split}$$

$$O_{K\pi}^{\pm}(t) = \left(\bar{s}\gamma^{5}l\right)(t\pm\delta)\left(\bar{l}\gamma^{5}l\right)(t).$$

Such operators have good overlap with $K\pi$ states and poor overlap with resonant states (e.g. κ)⁷.

⁷Kiyoshi Sasaki (Tokyo Inst. Tech.) et al. [PACS-CS Collaboration], Phys.Rev. D89 (2014) 054502

$$D_y S(x,y) = \eta(x)$$

• We use
$$\eta(x) = \frac{1}{\sqrt{2}} (\operatorname{rand}(\pm 1 \pm i))$$

• Quark and antiquark propagator with the same source averaged over 'hits', $\psi_{\eta}(x) \equiv \eta(x)\psi(x)$:

$$\sum_{\mathsf{x}_1,\mathsf{x}_2} \langle \bar{\psi}_{\eta}(\mathsf{x}_1)\psi_{\eta}(\mathsf{x}_2)\rangle_{\eta} = \sum_{\mathsf{x}} \bar{\psi}(\mathsf{x})\psi(\mathsf{x})$$

• In practice one 'hit' is enough (time + gauge averaging)

Propagator sources 2

If we use two quark and two antiquark propagators with the same source:

Possible solutions:

- Ignore second term vanishes under gauge average, but additional noise.
- **②** Use two different noise sources η_1 and η_2 for each meson, but additional inversions.
- **③** Separate sources in time.

$K\pi$ I=3/2 contractions

$$C_{K\pi}^{I=3/2}(t)=D-C$$

Rectangle graph for l=1/2 correlator

・ロト・白下・ (川下・ (山下・ (日・)

Around-the-world effects

$$\mathrm{Tr}\left(e^{-H(T-t_1)}O_{K\pi}^{\dagger i}e^{-H(t_1-t_2)}O_{K\pi}^{j}\right)/\mathrm{Tr}\left(e^{-HT}\right)$$

 $C_{K\pi}(t) = |\langle K\pi | \pi(\delta)K(0) | 0 \rangle|^2 e^{-E_{K\pi}(t+\delta)}$ $+ |\langle 0 | \pi(\delta)K(0) | K\pi \rangle|^2 e^{-E_{K\pi}(T-t-\delta)}$ $+ |\langle K | \pi(\delta)K(0) | \pi \rangle|^2 e^{-m_{\pi}(T-t-\delta)} e^{-m_{\kappa}(t+\delta)}$ $+ |\langle \pi | \pi(\delta)K(0) | K \rangle|^2 e^{-m_{\kappa}(T-t-\delta)} e^{-m_{\pi}(t+\delta)}$ $+ \dots$

ヘロト ヘ部ト ヘヨト ヘヨト

$$C_{\kappa\pi}(t) = |\langle \kappa\pi | \pi(\delta)\kappa(0) | 0 \rangle|^2 e^{-E_{\kappa\pi}(t+\delta)} + |\langle 0 | \pi(\delta)\kappa(0) | \kappa\pi \rangle|^2 e^{-E_{\kappa\pi}(T-t-\delta)} + |\langle \kappa | \pi(\delta)\kappa(0) | \pi \rangle|^2 e^{-m_{\pi}(T-t-\delta)} e^{-m_{\kappa}(t+\delta)} + |\langle \pi | \pi(\delta)\kappa(0) | \kappa \rangle|^2 e^{-m_{\kappa}(T-t-\delta)} e^{-m_{\pi}(t+\delta)} + \dots$$

▲ロト ▲御 ▶ ▲臣 ▶ ▲臣 ▶ ● 臣 ● のへで

Physical run parameters

$48^{3} \times 96$	$64^3 imes 128$
Iwasaki	Iwasaki
Möbius DWF	Möbius DWF
2.13	2.25
0.0362	0.02661
0.00078	0.000378
88	80
1.730(4)	2.359(7)
5.476(12)	5.354(16)
139.2(2)	139.3(3)
499.2(2)	507.9(4)
3.863(6)	3.778(8)
	$48^3 \times 96$ lwasaki Möbius DWF 2.13 0.0362 0.00078 88 1.730(4) 5.476(12) 139.2(2) 499.2(2) 3.863(6)

- $\bullet\,$ quark sources every second time slice on 48^3, every fourth on 64^3
- antiperiodic boundary conditions in time direction only

э

3-point functions

 $\pi \to K$ and $K \to \pi$ matrix elements can be calculated in an alternative way using the following correlation functions:

$$C_{K \to \pi}(t) = \langle \pi(\Delta) \pi(t + \delta) K(t) K(0) \rangle$$

= $\langle 0 | O_{\pi} | \pi \rangle \langle \pi | O_{K\pi} | K \rangle \langle K | O_{K} | 0 \rangle e^{-m_{\pi}(\Delta - t)} e^{-m_{K}t}$
+ $\langle \pi | O_{\pi} | 0 \rangle \langle 0 | O_{K\pi} | K\pi \rangle \langle K\pi | K | \pi \rangle e^{-m_{\pi}(T - \Delta)} e^{-E_{K\pi}t}$
+ ...,

 $\pi \rightarrow K$ matrix element calculated in an analogous way.

Continuum extrapolation revisited:

$a_0 m_{\pi}$	48 ³	64 ³	continuum
I=3/2	-0.068(8)	-0.068(7)	-0.07(2)
I=1/2	0.16(1)	0.16(1)	0.16(3)
I=3/2	-0.063(8)	-0.059(5)	-0.06(1)
I=1/2	0.178(9)	0.170(9)	0.16(2)

	$a_0^{3/2} m_{\pi}$	$a_0^{1/2} m_{\pi}$
Büttiker et. al.	-0.0448(77)	0.224(22)
$\mathcal{O}(p^4)$ ChPT	-0.05(2)	0.19(2)
NPLQCD	$-0.0574(16)\left(egin{array}{c} +24 \ -58 \end{array} ight)$	$0.1725(13)\left(egin{array}{c} +23 \ -156 \end{array} ight)$
Fu	-0.0512(18)	0.1819(35)
PACS-CS	-0.0602(31)(26)	0.183(18)(35)
RBC-UKQCD (5p)	-0.07(2)	0.16(3)
(preliminary)		
RBC-UKQCD (3p)	-0.06(1)	0.16(2)
(preliminary)		

・ロ・・ (日・・ モ・・ モ・・ 田

৩ ৭ ে 20 / 24

- We are able to generate ensembles with physical pion and kaon masses.
- Calculation of $K\pi$ energies at low values of $m_{\pi}T$ and $m_{K}T$ suffers from significant around-the world effects.
- Around-the-world effects can be treated reliably using a 5-parameter fit...
- ...and even more reliably by including $K \to \pi$ and $\pi \to K$ matrix elements.
- First calculation of scattering lengths that does not rely on chiral perturbation theory.
- Although low statistics prevent us from obtaining an accurate I = 3/2 result, we can get a good estimate for I = 1/2, which has been dominated by χPT errors in previous calculations.

Thank you for your attention!

・ロト ・日 ・ モ ・ モ ・ うくぐ

Chiral extrapolation

Plots taken from Lang et. al. Phys.Rev. D86 (2012) 054508.

・ロト・白下・山下・ 小田・ トロ・ ろんの