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Lattice simulations close to the physical pion mass

Advantage:  No or short chiral extrapolation

➡  Systematic uncertainties are much better controlled
 

Disadvantage:  Some problems get more severe for small pion masses

Signal-to-noise problem

Presence of multi-particle state contamination in correlation functions



Excited-state contribution to gA

Compute 

Consider large times

For small pion masses and large volumes (i.e. small momenta)

Nπ-state contribution has the smallest exponential suppression

              are volume suppressed and expected to be small

excited-state contributions

C2(t) = hN↵(t)N↵(0)i ➡

:  axial vector currentAN↵, N↵ :  nucleon fields

<E1 ⇡ EN + E⇡ E2 ⇡ MN + 2M⇡ E3 ⇡ MN⇤<

How small?

�E1 = E1 �MN

R =
CA

3 (t, t0)

C2(t)

CA
3 (t, t0) = �0

↵�hN�(t)A(t0)N↵(0)i

t � t0 � 0
R gA + b1e

��E1(t�t0) + b̃1e
��E1t

0
+ c1e

��E1t + . . .

b1, b̃1, c1



Topic of this talk

Here: Computation of                 due to Nπ-states in ChPT

Important: LO ChPT makes a definite prediction for the coefficients
i.e. they do not depend on LECs associated with interpolating fields

Details and full results for the 2pt-function in arXiv:1503.03649

t � t0 � 0
R gA + b1e

��E1(t�t0) + b̃1e
��E1t

0
+ c1e

��E1t + . . .

b1, b̃1, c1

➥ provides good estimate for this particular excited-state contamination



Baryon ChPT

Framework: Covariant Baryon ChPT

We assume 

isospin symmetry

a finite box with spatial extent  L ,  ⇒ discrete spatial momenta

infinite time extent T (for simplicity)

L(1)
int,LO =

igA
2f
 �µ�5�

a @µ⇡
a

 nucleon-pion Vertex

Gasser et al 1988
Becher, Leutwyler 1998
 ...

 (x) =

✓
p(x)
n(x)

◆
doublet of nucleon
spinor fields

Use literature expressions for Lagrangian and currents
Example: leading interaction term



Nucleon interpolating fields

Local 3-quark interpolating fields without derivatives

Map interpolating fields to ChPT 
based on their symmetry properties

Expand in powers of the pion fields

q =

✓
u
d

◆N1 = (q̃q)q

N2 = (q̃�5q)�5q antisym sum over color 
indices suppressed !

q̃ = qTC�5(i�2) .

charge conjugation

Ni = ↵̃i

✓
 +

i

2f
⇡a�a�5 + . . .

◆

LEC, only difference between N1 and N2 (at this order)

Ioffe 1981, Espriu et al 1983

Nagata et al 2008
P.  Wein et.al. 2011

nucleon-pion coupling



Smeared interpolating fields

Smeared interpolating fields build from smeared quark fields

The gauge covariant kernel K

depends on smearing (Gaussian, Gradient flow, ... )

is essentially zero for                              (``smearing radius”)

is diagonal in spinor space 

qsm(x) =

Z
d4yK(x� y)q(y) N1,sm = (q̃smqsm)qsm

N2,sm = (q̃sm�5qsm)�5qsm

Güsken 1989,  
Alexandrou et. al. 1991
Lüscher 2013|x� y| > Rsmear

⇒ Smeared fields

‣ map to the same pointlike fields as 
   their unsmeared counterparts provided Rsmear ⌧

1

M⇡

‣ transform as unsmeared ones

Different LECs only !



Correlators in ChPT

Remaining task: Standard PT calculation of the 2- and 3-pt functions

Feynman diagrams for the 3-pt function

4 diagrams for the 2-pt function 

a)

b) c) d)

e) f) g)

h) i) j)

k) l) m)

FIG. 1: Feynman diagrams for the three-point function. Squares represent the nucleon operator

at times t and 0. The diamond stands for the axial vector current at time t0. Circles represent a

vertex insertion at an intermediate space time point, and an integration over this point is implicitly

assumed. The solid and dashed lines represent nucleon and pion propagators, respectively.

Pluggin everything together we obtain

C3,a = ig

A

2|↵̃|2e�Mt (31)

Obviuosly this is equal to ig

A

times the LO result for the 2-pt function. Thus, taking the
ratio RLO = C3,LO/C2,LO we finally find

RLO = ig

A

. (32)

B. Nucleon-pion-state contributions

1. Generalities

The nucleon-pion contribution to the 3-pt function stems from the diagrams in figure 1.
These diagrams are obtained if two NLO parts of either the interpolating fields (fig. d) or
the axial vector current (figs. b and c) is used. In addition there are diagrams involving one
or two vertex insertions.

7

interpolating field current interaction vertex

OB 2015



Nπ contribution to ratio R

 We find              (as expected by symmetry)

The coefficients                 depend only on

No dependence on the LECs associated with the interpolating fields
(these enter at higher order) !

For estimates use             

R = gA +
X

pn

⇣
bne

��En(t�t0) + b̃ne
��Ent

0
+ cne

��Ent
⌘

General remarks concerning the result

bn, b̃n, cn gA M⇡Lf/MN M⇡/MN

bn = b̃n

gA ⇡ gA,expf/MN ⇡ f
exp

/MN,exp

M⇡/MN M⇡L
➥ LO ChPT makes a definite prediction for these coefficients
     as a function of                and

�En = En �MN



Nπ contribution to gA

R = gA +
X

pn

⇣
bne

��En(t�t0) + b̃ne
��Ent

0
+ cne

��Ent
⌘

General remarks concerning the result

�En = En �MN

Separate trivial prefactor 

and non-trivial ChPT result bn =
mn

16(fL)2E⇡L
b
3pt
n

non-trivial ChPT result

cn = c3ptn � c2ptn

=
mn

16(fL)2E⇡L

�
c3ptn � c2ptn

�

multiplicity of momentum states
m1 = 6, m2 = 12, ...

Comment: Expand in 
pn
MN

 and keep the leading term only

➥ we reproduce the results obtained with Heavy Baryon ChPT Tiburzi 2015



Results for the coefficients
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Observations:

b
3pt
n ⇡ �(c3ptn � c2ptn ) > 0

c3ptn � c2ptn ⇡ �c2ptn < 0

M⇡/MN M⇡/MN

n = 2, p2 =
p
2 p1n = 1, p1 = 2⇡/L



Nπ contribution to gA

R = gA +
X

pn

⇣
bne

��En(t�t0) + b̃ne
��Ent

0
+ cne

��Ent
⌘

�En = En �MN

Consider 

plateau method 1

summation method

plateau method 2

gA ⇡ R(t, t0 =
t

2
)

S(t) =

Z t

0
dt0R(t, t0) = const + t m(t) + . . .

gA ⇡ m(t)➥
Maiani et al 1987

gA ⇡ CA
3 (t, t0 = t/2)

CV
3 (t, t0 = t/2) 3pt-function with

vector current
as a function of sink time t 
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1.06

sink time t in fm

Nπ contribution to gA

Observations: ‣ +2 to +3% shift for plateau method 1
‣ -0.5 to -2% shift for summation method and plateau method 2
‣ Substantial cancellation effect in the plateau methods 
   due to opposite signs of the coefficients

plateau method 1

summation method

plateau method 2

M⇡ = 150MeV

M⇡L = 4

n  3

Here:



Nπ contribution to gA

M⇡L = 4

n  3

Vary pion mass:
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Nπ contribution to gA

M⇡ = 150MeV

M⇡L = 4

Vary number of included momentum states: 
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1.06
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n  4

sink time t in fm

plateau 1

summation

plateau 2



Errors

LO calculation only  ➡  error ? 
➥ perform next-order calculation (straightforward)

Smeared fields mapped on point-like ChPT fields  ➡  error                        ?

Comment: Impact of 3-particle Nππ state:

suppressed by additional factor

no momentum degeneracy

1

2(fL)2M⇡L

➥  Crude error estimate for the LO result:   50 -100 %  (??)

O(
1

M⇡Rsmear
)

➥ probably too small to play any role



Summary and outlook

ChPT provides estimates for the Nπ-state contributions in nucleon 
correlation functions

Nπ-state contamination to gA  is at the few-percent level

Outlook: 

Compute the next order 

Other observables:   Other nucleon charges
                               Momentum fraction < x >u-d

                                                    Electromagnetic form factors
                               ...



Backup slides



Nπ contribution to gA - analytical results

R = gA +
X

pn

⇣
bne

��En(t�t0) + b̃ne
��Ent

0
+ cne

��Ent
⌘

�En = En �MN

cn = c3ptn � c2ptn =
mn

16(fL)2E⇡L

�
c3ptn � c2ptn

�

gA = gA
E

tot,n +MN

E
tot,n �MN

cn,3pt =
1

3
gA

�
gA,n � 1

�2
✓
1� MN

EN,n

◆✓
2MN

EN,n
� 1

◆

cn,2pt = 3gA
�
gA,n � 1

�2
✓
1� MN

EN,n

◆



Nπ contribution to gA - analytical results

R = gA +
X

pn

⇣
bne

��En(t�t0) + b̃ne
��Ent

0
+ cne

��Ent
⌘

�En = En �MN

bn =
mn

16(fL)2E⇡L
b
3pt
n

bn = (gA,n � 1)


gA,ngA

✓
3 +

1

3

✓
1� 2MN

EN

◆◆
. . .

. . .+
2

3
g2A

✓
1 +

MN

EN,n

◆
EN,n � E⇡,n �MN

EN,n � E⇡,n +MN
� 4

#

gA = gA
E

tot,n +MN

E
tot,n �MN

= bn



Nπ contribution to gA

M⇡ = 150MeV

M⇡L = 4
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Nπ contribution to gA

M⇡L = 4
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sink time t in fm

Observations: ‣ 2 - 3% shift upwards for plateau method
‣ 0.5 - 2% shift downwards for summation method
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Comparison with finite volume effects

R = gA

 
1 + �N⇡(M⇡L,M⇡/MN )

!

gA(L) = gA(1)

 
1 + �FV(M⇡L)

!

combined finite volume/excited state effects


