Nucleon-pion-state contributions in the determination of the nucleon axial charge

Oliver Bär
Humboldt Universität zu Berlin

Outline
\square Introduction
\square

Lattice 2015 - Kobe
15 July 2015

Lattice simulations close to the physical pion mass

- Advantage: No or short chiral extrapolation
\Rightarrow Systematic uncertainties are much better controlled
- Disadvantage: Some problems get more severe for small pion masses

O Signal-to-noise problem
O Presence of multi-particle state contamination in correlation functions

Excited-state contribution to g_{A}

- Compute $C_{3}^{A}\left(t, t^{\prime}\right)=\Gamma_{\alpha \beta}^{\prime}\left\langle N_{\beta}(t) A\left(t^{\prime}\right) \bar{N}_{\alpha}(0)\right\rangle$

$$
\begin{aligned}
& C_{2}(t)=\left\langle N_{\alpha}(t) \bar{N}_{\alpha}(0)\right\rangle \\
& N_{\alpha}, \bar{N}_{\alpha}: \text { nucleon fields } \quad A: \text { axial vector current }
\end{aligned}
$$

$$
\Rightarrow \quad R=\frac{C_{3}^{A}\left(t, t^{\prime}\right)}{C_{2}(t)}
$$

- Consider large times

$$
\text { excited-state contributions } \quad \Delta E_{1}=E_{1}-M_{N}
$$

$$
R \xrightarrow{t \gg t^{\prime} \gg 0} g_{A}+b_{1} e^{-\Delta E_{1}\left(t-t^{\prime}\right)}+\tilde{b}_{1} e^{-\Delta E_{1} t^{\prime}}+c_{1} e^{-\Delta E_{1} t}+\ldots
$$

- For small pion masses and large volumes (i.e. small momenta)

$$
E_{1} \approx E_{N}+E_{\pi}<E_{2} \approx M_{N}+2 M_{\pi}<E_{3} \approx M_{N^{*}}
$$

O $N \pi$-state contribution has the smallest exponential suppression

- $b_{1}, \tilde{b}_{1}, c_{1}$ are volume suppressed and expected to be small

Topic of this talk

$$
R \xrightarrow{t \gg t^{\prime} \gg 0} g_{A}+b_{1} e^{-\Delta E_{1}\left(t-t^{\prime}\right)}+\tilde{b}_{1} e^{-\Delta E_{1} t^{\prime}}+c_{1} e^{-\Delta E_{1} t}+\ldots
$$

- Here: Computation of $b_{1}, \tilde{b}_{1}, c_{1}$ due to $N \pi$-states in ChPT
\Leftrightarrow provides good estimate for this particular excited-state contamination
- Important: LO ChPT makes a definite prediction for the coefficients i.e. they do not depend on LECs associated with interpolating fields
- Details and full results for the 2pt-function in arXiv: 1503.03649

Baryon ChPT

- Framework: Covariant Baryon ChPT

Use literature expressions for Lagrangian and currents Example: leading interaction term

$$
\mathcal{L}_{\mathrm{int}, \mathrm{LO}}^{(1)}=\frac{i g_{A}}{2 f} \bar{\Psi} \gamma_{\mu} \gamma_{5} \sigma^{a} \Psi \partial_{\mu} \pi^{a} \quad \Psi(x)=\binom{p(x)}{n(x)} \begin{aligned}
& \text { doublet of nucleon } \\
& \text { spinor fields }
\end{aligned}
$$

- We assume

O isospin symmetry
O a finite box with spatial extent L, \Rightarrow discrete spatial momenta
O infinite time extent T (for simplicity)

Nucleon interpolating fields

- Local 3-quark interpolating fields without derivatives

$$
\begin{aligned}
& N_{1}=(\tilde{q} q) q \\
& N_{2}=\left(\tilde{q} \gamma_{5} q\right) \gamma_{5} q \quad q=\binom{u}{d} \quad \tilde{q}=q^{\mathrm{T}} C \gamma_{5}\left(i \sigma_{2}\right) \\
& \begin{array}{l}
\text { antisym sum over color } \\
\text { indices suppressed }!
\end{array}
\end{aligned}
$$

- Map interpolating fields to ChPT based on their symmetry properties
- Expand in powers of the pion fields

$$
N_{i}=\tilde{\alpha}_{i}\left(\Psi+\frac{i}{2 f} \pi^{a} \sigma^{a} \gamma_{5} \Psi+\ldots\right)
$$

LEC, only difference between N_{1} and N_{2} (at this order)

Smeared interpolating fields

- Smeared interpolating fields build from smeared quark fields

$$
q_{\mathrm{sm}}(x)=\int \mathrm{d}^{4} y K(x-y) q(y) \quad \begin{aligned}
& N_{1, \mathrm{sm}}=\left(\tilde{q}_{\mathrm{sm}} q_{\mathrm{sm}}\right) q_{\mathrm{sm}} \\
& \\
& N_{2, \mathrm{sm}}=\left(\tilde{q}_{\mathrm{sm}} \gamma_{5} q_{\mathrm{sm}}\right) \gamma_{5} q_{\mathrm{sm}}
\end{aligned}
$$

- The gauge covariant kernel K

O depends on smearing (Gaussian, Gradient flow, ...)
O is essentially zero for $|x-y|>R_{\text {smear }} \quad$ ("smearing radius")

O is diagonal in spinor space
\Rightarrow Smeared fields $>$ transform as unsmeared ones

- map to the same pointlike fields as their unsmeared counterparts provided $\quad R_{\text {smear }} \ll \frac{1}{M_{\pi}}$
Different LECs only Different LECs only !

Correlators in ChPT

- Remaining task: Standard PT calculation of the 2- and 3-pt functions
- Feynman diagrams for the 3-pt function

d)

g)

j)

- interaction vertex
- 4 diagrams for the 2-pt function OB 2015

$N \pi$ contribution to ratio R

$$
\Delta E_{n}=E_{n}-M_{N}
$$

$$
R=g_{A}+\sum_{p_{n}}\left(b_{n} e^{-\Delta E_{n}\left(t-t^{\prime}\right)}+\tilde{b}_{n} e^{-\Delta E_{n} t^{\prime}}+c_{n} e^{-\Delta E_{n} t}\right)
$$

General remarks concerning the result

- We find $b_{n}=\tilde{b}_{n}$ (as expected by symmetry)
- The coefficients $b_{n}, \tilde{b}_{n}, c_{n}$ depend only on $f / M_{N} \quad g_{A} \quad M_{\pi} / M_{N} \quad M_{\pi} L$
- No dependence on the LECs associated with the interpolating fields (these enter at higher order) !
- For estimates use $f / M_{N} \approx f_{\exp } / M_{N, \exp } \quad g_{A} \approx g_{A, \exp }$
\Leftrightarrow LO ChPT makes a definite prediction for these coefficients as a function of M_{π} / M_{N} and $M_{\pi} L$

$N \pi$ contribution to g_{A}

$$
R=g_{A}+\sum_{p_{n}}\left(b_{n} e^{-\Delta E_{n}\left(t-t^{\prime}\right)}+\tilde{b}_{n} e^{-\Delta E_{n} t^{\prime}}+c_{n} e^{-\Delta E_{n} t}\right)
$$

General remarks concerning the result

$$
\Delta E_{n}=E_{n}-M_{N}
$$

- Separate trivial prefactor and non-trivial ChPT result

$$
\begin{aligned}
b_{n} & =\frac{m_{n}}{16(f L)^{2} E_{\pi} L} \bar{b}_{n}^{3 \mathrm{pt}} \\
c_{n} & =c_{n}^{3 \mathrm{pt}}-c_{n}^{2 \mathrm{pt}} \\
& =\frac{m_{n}}{16(f L)^{2} E_{\pi} L}\left(\bar{c}_{n}^{3 \mathrm{pt}}-\bar{c}_{n}^{2 \mathrm{pt}}\right)
\end{aligned}
$$

Comment: Expand in $\frac{p_{n}}{M_{N}}$ and keep the leading term only
\Rightarrow we reproduce the results obtained with Heavy Baryon ChPT

Results for the coefficients

Observations:

$$
\begin{gathered}
\bar{c}_{n}^{3 \mathrm{pt}}-\bar{c}_{n}^{2 \mathrm{pt}} \approx-\bar{c}_{n}^{2 \mathrm{pt}}<0 \\
\bar{b}_{n}^{3 \mathrm{pt}} \approx-\left(\bar{c}_{n}^{3 \mathrm{pt}}-\bar{c}_{n}^{2 \mathrm{pt}}\right)>0
\end{gathered}
$$

$N \pi$ contribution to g_{A}

$$
R=g_{A}+\sum_{p_{n}}\left(b_{n} e^{-\Delta E_{n}\left(t-t^{\prime}\right)}+\tilde{b}_{n} e^{-\Delta E_{n} t^{\prime}}+c_{n} e^{-\Delta E_{n} t}\right)
$$

- Consider

O plateau method I

$$
g_{A} \approx R\left(t, t^{\prime}=\frac{t}{2}\right)
$$

O summation method Maiani et al 1987

- plateau method 2

$$
\begin{array}{r}
S(t)=\int_{0}^{t} d t^{\prime} R\left(t, t^{\prime}\right)=\mathrm{const}+t m(t)+\ldots \\
\Leftrightarrow g_{A} \approx m(t)
\end{array}
$$

$$
g_{A} \approx \frac{C_{3}^{A}\left(t, t^{\prime}=t / 2\right)}{C_{3}^{V}\left(t, t^{\prime}=t / 2\right)}
$$

\longleftarrow
3pt-function with vector current
as a function of sink time t

$N \pi$ contribution to g_{A}

Observations: $\quad+2$ to $+3 \%$ shift for plateau method I

- -0.5 to -2% shift for summation method and plateau method 2
- Substantial cancellation effect in the plateau methods due to opposite signs of the coefficients

$N \pi$ contribution to g_{A}

Vary pion mass:

$$
\begin{aligned}
n & \leq 3 \\
M_{\pi} L & =4
\end{aligned}
$$

$N \pi$ contribution to g_{A}

Vary number of included momentum states:

$M_{\pi}=150 \mathrm{MeV}$
$M_{\pi} L=4$

Errors

- LO calculation only \Rightarrow error ?
\Leftrightarrow perform next-order calculation (straightforward)
- Smeared fields mapped on point-like ChPT fields \Rightarrow error $\mathrm{O}\left(\frac{1}{M_{\pi} R_{\mathrm{smear}}}\right)$?
\Leftrightarrow Crude error estimate for the LO result: 50-100 \% (??)

Comment: Impact of 3-particle $N \pi \pi$ state:
O suppressed by additional factor $\frac{1}{2(f L)^{2} M_{\pi} L}$
O no momentum degeneracy
\Leftrightarrow probably too small to play any role

Summary and outlook

- ChPT provides estimates for the $N \pi$-state contributions in nucleon correlation functions
- $N \pi$-state contamination to g_{A} is at the few-percent level
- Outlook:

O Compute the next order
O Other observables: Other nucleon charges Momentum fraction $\langle x\rangle_{u-d}$ Electromagnetic form factors
...

Backup slides

$N \pi$ contribution to g_{A} - analytical results

$$
\Delta E_{n}=E_{n}-M_{N}
$$

$$
R=g_{A}+\sum_{p_{n}}\left(b_{n} e^{-\Delta E_{n}\left(t-t^{\prime}\right)}+\tilde{b}_{n} e^{-\Delta E_{n} t^{\prime}}+c_{n} e^{-\Delta E_{n} t}\right)
$$

$$
c_{n}=c_{n}^{3 \mathrm{pt}}-c_{n}^{2 \mathrm{pt}}=\frac{m_{n}}{16(f L)^{2} E_{\pi} L}\left(\bar{c}_{n}^{3 \mathrm{pt}}-\bar{c}_{n}^{2 \mathrm{pt}}\right)
$$

$$
\bar{c}_{n, 3 \mathrm{pt}}=\frac{1}{3} g_{A}\left(\bar{g}_{A, n}-1\right)^{2}\left(1-\frac{M_{N}}{E_{N, n}}\right)\left(\frac{2 M_{N}}{E_{N, n}}-1\right)
$$

$$
\bar{c}_{n, 2 \mathrm{pt}}=3 g_{A}\left(\bar{g}_{A, n}-1\right)^{2}\left(1-\frac{M_{N}}{E_{N, n}}\right)
$$

$$
\bar{g}_{A}=g_{A} \frac{E_{\mathrm{tot}, n}+M_{N}}{E_{\mathrm{tot}, n}-M_{N}}
$$

$N \pi$ contribution to g_{A} - analytical results

$$
\Delta E_{n}=E_{n}-M_{N}
$$

$$
\begin{aligned}
& R=g_{A}+\sum_{p_{n}}\left(b_{n} e^{-\Delta E_{n}\left(t-t^{\prime}\right)}+\tilde{b}_{n} e^{-\Delta E_{n} t^{\prime}}+c_{n} e^{-\Delta E_{n} t}\right) \\
& =b_{n} \\
& b_{n}=\frac{m_{n}}{16(f L)^{2} E_{\pi} L} \bar{b}_{n}^{3 \mathrm{pt}} \\
& \bar{b}_{n}=\left(\bar{g}_{A, n}-1\right)\left[\bar{g}_{A, n} g_{A}\left(3+\frac{1}{3}\left(1-\frac{2 M_{N}}{E_{N}}\right)\right) \ldots\right. \\
& \left.\quad \ldots+\frac{2}{3} g_{A}^{2}\left(1+\frac{M_{N}}{E_{N, n}}\right) \frac{E_{N, n}-E_{\pi, n}-M_{N}}{E_{N, n}-E_{\pi, n}+M_{N}}-4\right]
\end{aligned}
$$

$$
\bar{g}_{A}=g_{A} \frac{E_{\mathrm{tot}, n}+M_{N}}{E_{\mathrm{tot}, n}-M_{N}}
$$

$N \pi$ contribution to g_{A}

sink time t in fm
$M_{\pi}=150 \mathrm{MeV}$
$M_{\pi} L=4$

$N \pi$ contribution to g_{A}

sink time t in fm

$$
\begin{aligned}
n & \leq 3 \\
M_{\pi} L & =4
\end{aligned}
$$

$N \pi$ contribution to g_{A}

Observations:

- $2-3 \%$ shift upwards for plateau method
- 0.5 - 2% shift downwards for summation method

$N \pi$ contribution to g_{A}

Comparison with finite volume effects

$$
\begin{aligned}
R= & g_{A}\left(1+\delta_{\mathrm{N} \pi}\left(M_{\pi} L, M_{\pi} / M_{N}\right)\right) \\
& \uparrow \\
& g_{A}(L)=g_{A}(\infty)\left(1+\delta_{\mathrm{FV}}\left(M_{\pi} L\right)\right)
\end{aligned}
$$

combined finite volume/excited state effects

