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Physics Goals
Hadron Spin Pion Form Factor Nucleon Form Factor
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What is the nucleon spin 
decomposition? 

Is quark spin suppression 
universal among hadrons?

How does the pion form 
factor transition to 
perturbative QCD?

Is there a “zero-crossing” in 
the proton electric form 

factor?

Pion Form Factor

• Asymptotic normalisation known from                    decay 

• Allows to study the transition from the soft to hard regimes 

• Low Q2: measured directly by scattering high energy pions from atomic electrons 

•   precise determination of 

• High Q2: quasi-elastic scattering off virtual pions 

• Model dependence
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Elastic Scattering - Polarisation Transfer
Polarisation transfer experiments at JLab revealed a surprising behaviour for GE/GM  

Precise results now available up to 8-9 GeV2 

What is the origin of the linear fall-off? 

Does         change sign?

26

coupled integral equations for QCD’s Green functions
that provide access to emergent phenomena of non-
perturbative QCD, such as dynamical chiral symme-
try breaking and confinement [98]. The DSEs admit a
symmetry-preserving truncation scheme that enables a
unified description of meson and baryon properties. The
approach has already achieved considerable success in
the pseudoscalar meson sector [19]. The prediction of
nucleon form factors in the DSE approach involves the
solution of a Poincaré-covariant Faddeev equation. In
the calculations of [17], dressed quarks form the elemen-
tary degrees of freedom and correlations between them
are expressed via scalar and axial vector diquarks. The
only variable parameters in this approach are the diquark
masses, fixed to reproduce the nucleon and ∆ masses,
and a diquark charge radius r+1 embodying the electro-
magnetic structure of the diquark correlations. A dif-
ferent approach to DSE-based form factor calculations
effects binding of the nucleon through a single dressed
gluon exchange between any two quarks [18] without ex-
plicit diquark degrees of freedom. In this calculation, the
only parameters are a scale fixed to reproduce the pion
decay constant and a dimensionless width parameter η
describing the infrared behavior of the effective coupling
strength of the quark-quark interaction.

The predictions of several DSE-based calculations for
the proton Sachs form factor ratio R = µpG

p
E/G

p
M are

shown in Figure 16. The quark-diquark model calcula-
tion [17] underpredicts the data at low Q2 but agrees rea-
sonably well at higher Q2. The disagreement at low Q2 is
attributed to the omission of meson cloud effects. The ad-
dition of dynamically generated, momentum-dependent
dressed-quark anomalous magnetic moments [99] that be-
come large at infrared momenta improves the description
of R at low Q2. The three-quark model calculation [18]
agrees with the data at low Q2, but underpredicts the
data at higher Q2, becoming numerically unreliable for
Q2 ! 7 GeV2.

The deficiencies of the DSE approach, including the ap-
proximation schemes required to make the calculations
analytically tractable and the omission of meson-cloud
effects, are evident in the disagreement between the pre-
dicted form factors and the experimental data, which is
more severe than in the various models described above,
which have more adjustable parameters. The advantage
of the approach is that it provides a systematically im-
provable framework for the ab initio evaluation of hadron
properties in continuum non-perturbative QCD, that is
complementary to discretized lattice simulations. As fun-
damental measurable properties of nucleon structure, the
electromagnetic form factors are essential to the feedback
between theory and experiment required to make further
progress in this direction.
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FIG. 16. (color online) Predictions of DSE-based calcula-
tions for R = µpG

p
E/G

p
M compared to experimental data

from cross section [5, 80, 81] (empty circles) and polariza-
tion [1, 2, 25] (filled circles) experiments, where the results of
[2] are replaced by those of the present work. The results of
[17] (Cloët09) are shown for a particular choice of the diquark
charge radius. The curve from [99] (Chang11) is that of [17]
with the addition of dressed quark anomalous magnetic mo-
ments. The results of [18] (Eichmann11) are shown for two
values of η, showing the weak sensitivity of the form factor
results to this parameter.

7. AdS/QCD

In the past decade, theoretical activity has flourished
in modeling QCD from the conjecture of the anti-de
Sitter space/conformal field theory (AdS/CFT) corre-
spondence [133–135], a mapping between weakly coupled
gravitational theories in curved five-dimensional space-
time and strongly coupled gauge theories in flat four-
dimensional space-time. Since QCD is not a conformal
field theory, the symmetry of the anti-de Sitter space
is broken by applying a boundary condition. Brodsky
and de Teramond [136] have calculated F1 for the pro-
ton and neutron and emphasized the agreement of the
predicted Q2F1 dependence with the data. Abidin and
Carlson [137] have calculated both proton and neutron F1

and F2 along with the tensor form factors using both hard
and soft wall boundary conditions. This model predicts
the same asymptotic Q2 dependence as the dimensional
scaling of pQCD, but does not reproduce the detailed
features of the data in the presently measured Q2 region.

[JLab, Hall A, PRC85 (2012) 045203]

Gp
E



Feynman–Hellmann Theorem
• A method for determining hadronic matrix elements from energy shifts 

• Suppose we want 

• Proceed by 

• FH tells us 

• Calculation of matrix element      hadron spectroscopy

hH|O|Hi
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Feynman–Hellmann Theorem
• Most commonly used to determine    terms since 

• and:

�H
l = mlhH|(ūu+ d̄d)|Hi �H

s = mshH|s̄s|Hi
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Feynman–Hellmann: Hadron spin
• To access hadron spin fractions, we modify the action to include the axial 

current 

• FH Theorem then gives 

• but for a spin-J hadron with polarisation m in the z-direction 

• Also note: reversing hadron polarisation     changing sign of 

S ! S + �

X

x

q̄(x)i�5�3q(x)
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Lattice Jargon
• Nf =2+1 O(a)-improved Clover fermions (“SLiNC” action) 

• Tree-level Symanzik gluon action (plaq. + rect.) 

• Results from a single lattice spacing (a~0.074fm), and volume (323 x 64) 

• Most results are at the SU(3)-symmetric point (mpi~470 MeV) 
• Total spin contribution (also mpi~330 MeV) 

• ~500 measurements per mass per field strength



Connected Spin Contributions
• Use existing Nf=2+1 configurations 

• Modify the action of the valence quarks only 

• Allows for comparison with results using standard 3-point function 
methods 

• For more details see: A. Chambers et al. [CSSM/QCDSF/UKQCD] PRD(2014)



Connected Spin Contributions
• Start with nucleon mass vs. field strength �

Fit: quadratic in �

linear terms give        and�u �d

SU(3) symmetric point,
m⇡ ⇡ 470MeV

SU(3) symmetric point



Connected Spin Contributions
• Start with nucleon mass vs. field strength �

Fit: quadratic in �

linear terms give        and�u �d

SU(3) symmetric point,
m⇡ ⇡ 470MeV

SU(3) symmetric point

Fit energy differences



Connected Spin Contributions
• Connected spin factions in various hadrons

Baryon Octet/Decuplet & Vector Mesons

Alexander Chambers (UOA) Hadron Spin & Feynman-Hellmann Theorem December 8, 2014 11 / 27(Connected) Spin Fraction Universal ~60%



Disconnected Spin Contributions
• Include operator in HMC 

• For Hermitian spin operator, the Fermion matrix is modified by 

• Does not satisfy       Hermiticity ⇒ sign problem 

• Hence we simulate with      Hermitian operator 

• Correlation function picks up complex phase 

• Extract matrix element from phase

M ! M(�) = M0 + � i�5�3
�5

M ! M(�) = M0 + � �5�3

�5

C(�, t)
large t�! A(�)e�E(�)tei�(�)t

�(�) = ��q +O(�3)



Disconnected Spin Contributions
• Isolate complex phase: 

• “Imaginary spin difference” / “Real spin average”

I
h
C+(�, t)

i
� I

h
C�(�, t)

i

R
h
C+(�, t)

i
+R

h
C�(�, t)

i large t�! tan(�t)

Connected 
test



Disconnected Spin Contributions
• Isolate complex phase: 

• “Imaginary spin difference” / “Real spin average”
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Disconnected Spin Contributions
• Difficult to distinguish tangent behaviour from excited states

Disconnected H(t) =
Im [C+(t)� C�(t)]

Re [C+(t) + C�(t)]
! tan(�t)



Disconnected Spin Contributions
• Difficult to distinguish tangent behaviour from excited states

Disconnected H(t) =
Im [C+(t)� C�(t)]

Re [C+(t) + C�(t)]
! tan(�t)

arctan [H(t)] /t ! �



Disconnected Spin Contributions
• SU(3) symmetric point; 3 field strengths



Strangeness spin Global comparison

(�u+�d+�s)/3



Non-forward matrix elements: 
Momentum injection from external field



Feynman-Hellmann: Non-Forward
• Modify Lagrangian with external field containing a spatial Fourier transform 

• eg. vector current 

• Choose Breit frame Fourier projection of hadron state 
• Time dependence is trivial (to leading order in     ): “Energy shift” 

• Pion form factor 

• “Feynman-Hellmann”:

E(~p0) = E(~p)

�

L(y) ! L0(y) + �ei~q.~yq(y)�µq(y)

h⇡(~p0)|q(0)�µq(0)|⇡(~p)i = (p+ p0)µ F⇡(q
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Feynman-Hellmann: Non-Forward
• Modify Lagrangian with external field containing a spatial Fourier transform 

• eg. vector current 

• Choose Breit frame Fourier projection of hadron state 
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FH Non-forward: Pion
• Ratio of correlators

~p = (�1, 0, 0)

~q = ( 1, 1, 0)

~p0 = ( 0, 1, 0)

C(t) =
G(�, t)

G(0, t)

t!1' A(�)

A(0)

⇥
e(E+�E)t + e(E��E)(T�t)

⇤

e�Et + e�E(T�t)



Effective “Mass” plot Only determine energy shift 
where ground state saturated

Free-particle dispersion



Pushing the limits
• “Extreme” momentum injection

~p = (�2,�1,�1)

~q = ( 4, 2, 2)

~p 0 = ( 2, 1, 1)



Pion Form Factor Can probe momentum range of  
JLab 12 GeV proposal

VMD - lattice

VMD - phys

pQCD - phys

pQCD - lattice



Nucleon Form Factors “Up quark” temporal current 
energy shifts

~q = (1, 1, 0)

~q = (2, 1, 1)

~q = (4, 4, 0)



Nucleon Form Factors Isovector

Electric

Magnetic



Summary
• Feynman-Hellmann technique offers alternative strategy for extracting 

hadron matrix elements 
• Only requires analysis of 2-pt correlators 

• Resolving the nucleon quark spin contribution 
• Competitive precision in the disconnected sector 

• Able to study other hadrons with no additional inversions 

• At SU(3) symmetric point, quark spin of ~60–65% rather universal 

• New application of non-forward matrix elements 
• Systematics still to be addressed 

• Statistical signals that allow us to probe momentum transfers of interest 
to upcoming experimental programs



Nucleon Form FactorsNucleon Form Factors

Dirac and Pauli form factors defined by

h ~p 0 ~
s

0 | q̄(0)�µq(0) | ~p ~
s i = ū(~p 0,�0)

h
�
u

F1(Q
2) + �µ⌫

q⌫

2m
F2(Q

2)
i
u(~p,�)

(41)
Make idential modification to the action as for the pion case

L(y) ! L(y) + � e

i

~
q·(~y�~

x)
q̄(y) �µ q(y) (42)

Feynman-Hellmann relation gives
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F2(�; ~p,m)
(43)

Need to make choice of projection matrix �

Alexander Chambers (QCDSF/CSSM) Hadron Structure & Feynman-Hellmann INSERT DATE HERE 24 / 27



Nucleon Form FactorsNucleon Form Factors

For temporal current, choose projection matrix

�unpol. =
1

2
(1 + �4) (44)

then the Feynman-Hellmann relation gives
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For ~p 0 = �~
p we have simply
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Alexander Chambers (QCDSF/CSSM) Hadron Structure & Feynman-Hellmann INSERT DATE HERE 25 / 27



Nucleon Form FactorsNucleon Form Factors

For spatial current, choose �± as in axial charge calculation

< @E

@�
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=± 1

2mE
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~
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q F1(Q
2) (47)
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