Fermionic twisted boundary conditions with reweighting method

Andrea Bussone

14 July 2015

Collaborators:

Michele Della Morte Martin Hansen Claudio Pica

1

Plan of the talk

Non-periodic boundary conditions (NPBC)
 Why NPBC

2 Reweighting method

- Idea and Integral representation of determinant
- Multi-step method

Observables with reweighting

- Plaquette
- Pion dispersion relation

Onclusions and outlooks

Non-periodic boundary conditions

NPBC Applications on the lattice

Fine resolution of momenta on spatial direction

$$p_j^{\mathsf{lat}} \underset{\mathrm{NPBC}}{\longrightarrow} p_j = p_j^{\mathsf{lat}} + rac{ heta_j}{L}$$

• Form factors: an example is the semi-leptonic decay K_{ℓ3}

[Boyle et al. Phys. Rev. Lett. 100 (2008) 141601]

Matching HQET-QCD

[Della Morte et al. JHEP 1405 (2014) 060]

• Dispersion relation: useful check [de Divitiis et al. Phys. Lett. B 595 (2004) 408]

$$egin{aligned} &\langle \pi(p') | V_\mu | \mathcal{K}(p)
angle = (p+p')_\mu \, f_+(q^2) \ &+ (p-p')_\mu \, f_-(q^2) \end{aligned}$$

Finite volume observables

with different $\boldsymbol{\theta}$ in SF

$$E_H\left(\underline{p}^{\mathsf{lat}}=0\right) = \sqrt{m_H^2 + \frac{|\underline{\theta}|^2}{L}}$$

Twisting only in the <u>valence</u> \longrightarrow Breaking of unitarity

We expect that it is a finite volume effect: in χ -PT this is the case [Sachrajda, Villadoro Phys. Lett. B 609 (2005) 73]

Reweighting can be used in small volume to compensate breaking of unitarity

Heuristic argument

"Almost-continuous" momenta case θ reshuffles the momenta \Rightarrow no effect

Gap beetween momenta not negligible Access to not permitted momenta values

Direct simulations

NPBC on the spatial direction

$$\psi\left(\mathbf{n}+\mathbf{N}_{\mu}\hat{\mu}\right) = \begin{cases} \mathsf{e}^{i\theta_{j}}\psi(\mathbf{n})\\ \psi(\mathbf{n}) \end{cases}$$

momenta

$$p_j = p_j^{\mathsf{lat}} + rac{ heta_j}{L}$$

$$\psi(\mathbf{x}) \equiv \mathrm{e}^{\theta_j \mathbf{x}_j / N_L} \widetilde{\psi}(\mathbf{x})$$

 \leftrightarrow

$$\mathbf{U}(1) \text{ interaction} \\ A_{\mu} = (\phi, A_j) = (0, \theta_j/L) \\ \underline{B} = \underline{\nabla} \times \underline{A} = \underline{0} \\ \end{bmatrix}$$

[Bedaque Phys. Lett. B 593 (2004) 82]

links

$$\mathcal{U}_{\mu}(n) = egin{cases} \mathrm{e}^{i heta_j/N_L} U_j(n) \ U_4(n) \end{cases}$$

Reweighting method

Reweighting The idea of reweighting

$$a = \{\beta, m_1, m_2, \dots, m_{n_f}, \theta_{\mu}, \dots\} \qquad \stackrel{\mathsf{HMC}}{\longrightarrow} \quad b = \{\beta', m'_1, m'_2, \dots, m'_{n_f}, \theta'_{\mu}, \dots\}$$
 Usually very expensive in computer time

The reweighting idea is to reuse the old configurations to "generate" new ones

$$\langle \mathcal{O} \rangle_{a} = \frac{1}{N} \sum_{i=1}^{N} \widetilde{\mathcal{O}}[U_{i}] + O\left(\frac{1}{\sqrt{N}}\right) \longrightarrow \langle \mathcal{O} \rangle_{b} = \frac{\langle \widetilde{\mathcal{O}} W_{a,b} \rangle_{a}}{\langle W_{a,b} \rangle_{a}}$$

Reweighting factor

$$P_{a}[U] = e^{-S_{\mathbf{G}}[\beta, U]} \prod_{i=1}^{n_{f}} \det \left(D[U] + m_{i} \right), \quad W_{a,b} = \frac{P_{b}}{P_{a}}$$

Reweighting on the NPBC

$$\mathcal{W}_{ heta} = \det \left(D_{\mathcal{W}}(heta) D_{\mathcal{W}}^{-1}(0)
ight) = \det \left(D_{\mathcal{W}}[\mathcal{U}] D_{\mathcal{W}}^{-1}[\mathcal{U}]
ight)$$

Reweighting

Applicability conditions and stochastic estimation

Integral representation of a normal matrix determinant, $A \in \mathbb{C}^{n \times n}$ with spectrum $\lambda(A)$

$$\begin{aligned} \frac{1}{\det A} &= \int \mathcal{D}\eta \exp\left(-\eta^{\dagger} A\eta\right) < \infty \Longleftrightarrow \mathbb{R}e\lambda\left(A\right) > 0 \text{ [Finkenrath et al. Nucl. Phys. B 877 (2013) 441]} \\ &= \left\langle \frac{\mathrm{e}^{-\eta^{\dagger} A\eta}}{p(\eta)} \right\rangle_{p(\eta)} = \frac{1}{N_{\eta}} \sum_{k=0}^{N_{\eta}} \mathrm{e}^{-\eta^{\dagger}_{k}(A-1)\eta_{k}} + \mathrm{O}\left(\frac{1}{\sqrt{N_{\eta}}}\right) \end{aligned}$$

Existence of the gaussian moments (hermitian matrix)

$$\left\langle \frac{\mathrm{e}^{-2\eta^{\dagger}A\eta}}{p(\eta)^{2}} \right\rangle_{p(\eta)} = \int \mathcal{D}\eta \, \mathrm{e}^{-\eta^{\dagger}(2A-1)\eta} < \infty \iff \lambda(A) > \frac{1}{2}$$

$$\vdots$$

$$\left\langle \frac{\mathrm{e}^{-N\eta^{\dagger}A\eta}}{p(\eta)^{N}} \right\rangle_{p(\eta)} = \int \mathcal{D}\eta \, \mathrm{e}^{-\eta^{\dagger}[NA-(N-1)1]\eta} < \infty \iff \lambda(A) > \frac{N-1}{N} \underset{N \gg 1}{\longrightarrow} 1.$$

Reweighting Multi-step method: Why?

For L large, at fixed theta the reweighting factor goes to one (at tree level)

Multi-step method

Reweighting Multi-step method: Why?

For large θ (or large L) we need to emply a multi-step method in order to keep the error under control.

Reweighting Multi-step method

Suppose now $D_W(\theta)D_W^{-1}(0)$ where θ is a parameter too large to trust the direct stochastic estimation

We factorize our matrix in the following way

$$D_W(\theta)D_W^{-1}(0) = A = \prod_{l=0}^{N-1} A_l$$
, with $A_l \simeq \mathbf{1} + O(\delta \theta_l)$

$$\frac{1}{\det A} = \prod_{\ell=0}^{N-1} \left\langle \frac{\exp\left(-\eta^{(\ell),\dagger} A_{l} \eta^{(\ell)}\right)}{p\left(\eta^{(\ell)}\right)} \right\rangle_{p\left(\eta^{(\ell)}\right)} \qquad \sigma^{2} = \sum_{\ell=0}^{N-1} \left\lfloor \sigma_{\eta^{(\ell)}}^{2} \prod_{k \neq \ell} \det\left(A_{k}\right)^{-2} \right\rfloor$$

Observables with reweighting

Lattice setup

Action

- **SU**(2), fermions in the fundamental (confinement, χ SB)
- Wilson plaquette gauge action
- Unimproved Wilson fermions
- $\underline{\theta} = \theta \begin{pmatrix} 1, & 1, & 1 \end{pmatrix}$
- γ_5 version of the Dirac-Wilson operator with $N_f = 2$ fermions for reweighting
- Analyzed configurations at $\theta = 0$:

V	β	m _{cr}	N _{cnf}	traj. sep.
$16 imes 8^3$	2.2	-0.6	10 ³	10
32×24^3	2.2	-0.65	394	20
32×24^3	2.2	-0.72	380	10

Going from SU(2) to SU(3) we expect that the reweighting factor is more difficult to estimate (obviously true at tree level)

イロト 不得 トイヨト イヨト ヨヨ ろくろ

Reweighting

Criteria for the stochastic estimation

Quantitive criteria to select when a sthocastic computation is good enough

We want to kill the stochastic noise and to deal only with the <u>quantum fluctuations</u> from the gauge (otherwise averages are dominated by spikes)

Reweighting Mean reweighting factor

16

Plaquette Reweight the plaquette

Interesting observable because it does not depend on the boundary condition

$$L[\mathcal{U}] = \mathsf{Tr}\left(\prod_{\mathsf{loop}} e^{i\theta_{\mu}/N_{\mu}} U_{\mu}\right) = \mathsf{Tr}\left(\prod_{\mathsf{loop}} U_{\mu}\right) = L[U]$$

The reweighted plaquette is: $\langle L[\mathcal{U}] \rangle_{\theta} = \langle L[U] \rangle_{\theta} = \frac{\langle L[U] W_{\theta} \rangle_{0}}{\langle W_{\theta} \rangle_{0}}$

Errors are estimated with jackknife procedure currently we are neglecting autocorrelation

◆□▶ ◆□▶ ◆目▶ ◆日▶ 目目 のへで

Plaquette: $V = 16 \times 8^3$

Reweighted plaquette

Including the reweighting factor for only one flavour ($\sqrt{W_{\theta}}$ because $N_f = 2$)

18

Plaquette: $V = 16 \times 8^3$

Reweighted plaquette

Pion correlator

Twisting the valence and reweighted correlator

Substitution: $\underline{p} \rightarrow \underline{p}^{\mathsf{lat}} + \underline{\theta}/L$

• We twist only one flavour in the valence

$$\gamma_{5} \underbrace{\overbrace{\qquad}}_{u \to \left(p_{0}, \underline{\rho}^{\mathsf{lat}}\right)}^{q_{\mathsf{lat}}} \gamma_{5}} \begin{cases} \pi^{\pm} \to (E, -\underline{\theta}/L) & \text{Charged pion state} \\ with momentum -\underline{\theta}/L \end{cases}$$

• We reweight the correlator to include the twist in the sea $(\sqrt{W_{\theta}})$

Pseudo-scalar correlator • symmetrize in time the correlator (cosh behaviour) • effective energy $m_{\text{eff}}(n_t) = \ln \frac{C(n_t)}{C(n_t+1)}$

・ロト (日本)(日本)(日本)(日本)(日本)(日本)

Pion: $V = 16 \times 8^3$

Dispersion relation

• Lattice <u>free</u> curve (black): $\cosh(aE) = 3 + \cosh(am_{\pi}) - 3\cos\left(\frac{a\theta}{L}\right)$

Pion:
$$V = 32 \times 24^3$$

Dispersion relation

 $m_{
m cr}\simeq 0.65$

 $m_{\rm cr}\simeq 0.72$

Conclusions and outlooks

Conclusions

We employed the reweighting method to generate in a good way new configurations with different boundary conditions

- We performed the reweighting in the SU(2) theory
- We found a 1‰ effect in the reweighted plaquette (reweighting two flavours) and correlator at $\theta = \pi/2$ in the case of small volume
- No sizeable effects in the case of bigger volumes
- We saw a systematic effect (upward) in the dispersion relation

In general the effects are small even at small volumes

Outlooks

Future goals

- \bullet Direct comparison with the actual simulation at a specific θ
- QED through reweighting, i.e. non-constant $\boldsymbol{\theta}$
 - *g* 2
 - Light-light scattering [Blum et al. Phys. Rev. Lett. 114 (2015) 1, 012001]

Backup slides

・ロト・4回ト・4回ト・4回ト・4日ト

Tree level exact computation An useful test in SU(3)

Tree level stochastic approximation

An useful test

We work with $Q = \gamma_5 D_W$ and $N_f = 2$ to fulfil the existence condition

28

Tree level stochastic approximation

An useful test

Pion correlator Lattice correlator

Pion correlator

- Correlator: $\langle \mathcal{O}(n)\overline{\mathcal{O}}(0)\rangle_{\mathsf{F}} = -\mathsf{Tr}\left[\gamma_5 D_u^{-1}(n,0)\gamma_5 D_d^{-1}(0,n)\right]$
- Projection onto a definite \underline{p}_{π} : $\langle \widetilde{\mathcal{O}}(\underline{p}_{\pi}, n_t) \overline{\mathcal{O}}(0) \rangle \underset{n_t \gg 1}{\simeq} |\langle 0| \hat{\mathcal{O}} |\pi \rangle|^2 e^{-an_t E(\underline{p}_{\pi})}$

Pion correlator: $V = 16 \times 8^3$

Effective energy

Tiny effect at small volumes