Andrea Bussone

14 July 2015

$$
\mathrm{CP}^{3} \text { Origins }
$$

Collaborators: Michele Della Morte Martin Hansen
Claudio Pica

Plan of the talk

(1) Non-periodic boundary conditions (NPBC)

- Why NPBC
(2) Reweighting method
- Idea and Integral representation of determinant
- Multi-step method
(3) Observables with reweighting
- Plaquette
- Pion dispersion relation
(4) Conclusions and outlooks

Non-periodic boundary conditions

NPBC

Applications on the lattice

Fine resolution of momenta on spatial direction

$$
p_{j}^{\text {lat }} \underset{\mathrm{NPBC}}{\longrightarrow} p_{j}=p_{j}^{\text {lat }}+\frac{\theta_{j}}{L}
$$

- Form factors: an example is the semi-leptonic decay $K_{\ell 3}$
[Boyle et al. Phys. Rev. Lett. 100 (2008) 141601]
- Matching HQET-QCD [Della Morte et al. JHEP 1405 (2014) 060]
- Dispersion relation: useful check [de Divitiis et al. Phys. Lett. B 595 (2004) 408]

$$
\begin{aligned}
\left\langle\pi\left(p^{\prime}\right)\right| V_{\mu}|K(p)\rangle= & \left(p+p^{\prime}\right)_{\mu} f_{+}\left(q^{2}\right) \\
& +\left(p-p^{\prime}\right)_{\mu} f_{-}\left(q^{2}\right)
\end{aligned}
$$

Finite volume observables with different θ in SF

$$
E_{H}\left(\underline{p}^{\text {lat }}=0\right)=\sqrt{m_{H}^{2}+\frac{|\underline{\theta}|^{2}}{L}}
$$

NPBC

Problems and comments

Twisting only in the valence \longrightarrow Breaking of unitarity

- Sea quark propagator: \Longrightarrow —

- Valence quark propagator:

We expect that it is a finite volume effect: in χ-PT this is the case [Sachrajda, Villadoro Phys. Lett. B 609 (2005) 73] Reweighting can be used in small volume to compensate breaking of unitarity

Heuristic argument
"Almost-continuous" momenta case
θ reshuffles the momenta \Rightarrow no effect

Gap beetween momenta not negligible Access to not permitted momenta values

NPBC

Twisting the sea

Direct simulations

NPBC

 on the spatial direction$$
\psi(x) \equiv \mathrm{e}^{\theta_{j} x_{j} / N_{L}} \widetilde{\psi}(x)
$$

$\psi\left(n+N_{\mu} \hat{\mu}\right)=\left\{\begin{array}{l}\mathrm{e}^{i \theta_{\boldsymbol{j}}} \psi(n) \\ \psi(n)\end{array}\right.$
momenta

$$
p_{j}=p_{j}^{\text {lat }}+\frac{\theta_{j}}{L}
$$

$\mathbf{U}(1)$ interaction

$$
\begin{gathered}
A_{\mu}=\left(\phi, A_{j}\right)=\left(0, \theta_{j} / L\right) \\
\underline{B}=\underline{\nabla} \times \underline{A}=\underline{0}
\end{gathered}
$$

[Bedaque Phys. Lett. B 593 (2004) 82]
links

$$
\mathcal{U}_{\mu}(n)=\left\{\begin{array}{l}
\mathrm{e}^{i \theta_{j} / N_{L}} U_{j}(n) \\
U_{4}(n)
\end{array}\right.
$$

Reweighting method

Reweighting

The idea of reweighting

$$
a=\left\{\beta, m_{1}, m_{2}, \ldots, m_{n_{\boldsymbol{f}}}, \theta_{\mu}, \ldots\right\} \quad \xrightarrow{\mathrm{HMC}} \quad b=\left\{\beta^{\prime}, m_{1}^{\prime}, m_{2}^{\prime}, \ldots, m_{n_{\boldsymbol{f}}}^{\prime}, \theta_{\mu}^{\prime}, \ldots\right\}
$$ Usually very expensive in computer time

The reweighting idea is to reuse the old configurations to "generate" new ones

$$
\langle\mathcal{O}\rangle_{a}=\frac{1}{N} \sum_{i=1}^{N} \widetilde{\mathcal{O}}\left[U_{i}\right]+\mathrm{O}\left(\frac{1}{\sqrt{N}}\right) \longrightarrow\langle\mathcal{O}\rangle_{b}=\frac{\left\langle\widetilde{\mathcal{O}} W_{a, b}\right\rangle_{a}}{\left\langle W_{a, b}\right\rangle_{a}}
$$

Reweighting factor

$$
P_{a}[U]=\mathrm{e}^{-S_{G}[\beta, U]} \prod_{i=1}^{n_{f}} \operatorname{det}\left(D[U]+m_{i}\right), \quad W_{a, b}=\frac{P_{b}}{P_{a}}
$$

Reweighting on the NPBC

$$
W_{\theta}=\operatorname{det}\left(D_{W}(\theta) D_{W}^{-1}(0)\right)=\operatorname{det}\left(D_{W}[\mathcal{U}] D_{W}^{-1}[U]\right)
$$

Reweighting

Applicability conditions and stochastic estimation
Integral representation of a normal matrix determinant, $A \in \mathbb{C}^{n \times n}$ with spectrum $\lambda(A)$

$$
\begin{aligned}
\frac{1}{\operatorname{det} A} & =\int \mathcal{D} \eta \exp \left(-\eta^{\dagger} A \eta\right)<\infty \Longleftrightarrow \mathbb{R} \lambda(A)>0 \\
& =\left\langle\frac{\mathrm{e}^{-\eta^{\dagger} A \eta}}{p(\eta)}\right\rangle_{p(\eta)}=\frac{1}{N_{\eta}} \sum_{k=0}^{N_{\eta}} \mathrm{e}^{-\eta_{k}^{\dagger}(A-1) \eta_{k}}+\mathrm{O}\left(\frac{1}{\sqrt{N_{\eta}}}\right)
\end{aligned}
$$

Existence of the gaussian moments (hermitian matrix)

$$
\begin{aligned}
& \left\langle\frac{\mathrm{e}^{-2 \eta^{\dagger} A \eta}}{p(\eta)^{2}}\right\rangle_{p(\eta)}=\int \mathcal{D} \eta \mathrm{e}^{-\eta^{\dagger}(2 A-1) \eta}<\infty \Longleftrightarrow \lambda(A)>\frac{1}{2} \\
& \vdots \\
& \left\langle\frac{\mathrm{e}^{-N \eta^{\dagger} A \eta}}{p(\eta)^{N}}\right\rangle_{p(\eta)}=\int \mathcal{D} \eta \mathrm{e}^{-\eta^{\dagger}[N A-(N-1) 1] \eta}<\infty \Longleftrightarrow \lambda(A)>\frac{N-1}{N} \underset{N \gg 1}{\longrightarrow} 1
\end{aligned}
$$

Reweighting

Multi-step method: Why?
For L large, at fixed theta the reweighting factor goes to one (at tree level)

Reweighting

Multi-step method: Why?

For large θ (or large L) we need to emply a multi-step method in order to keep the error under control.

Reweighting

Multi-step method

Suppose now $D_{W}(\theta) D_{W}^{-1}(0)$ where θ is a parameter too large to trust the direct stochastic estimation

We factorize our matrix in the following way

$$
\begin{gathered}
D_{W}(\theta) D_{W}^{-1}(0)=A=\prod_{l=0}^{N-1} A_{\ell}, \text { with } A_{\ell} \simeq \mathbf{1}+\mathrm{O}\left(\delta \theta_{\ell}\right) \\
\frac{1}{\operatorname{det} A}=\prod_{\ell=0}^{N-1}\left\langle\frac{\exp \left(-\eta^{(\ell), \dagger} A_{l} \eta^{(\ell)}\right)}{p\left(\eta^{(\ell)}\right)}\right\rangle_{p\left(\eta^{(\ell)}\right)} \quad \sigma^{2}=\sum_{\ell=0}^{N-1}\left[\sigma_{\eta^{(\ell)}}^{2} \prod_{k \neq \ell} \operatorname{det}\left(A_{k}\right)^{-2}\right]
\end{gathered}
$$

Observables with reweighting

Lattice setup

Action

- SU(2), fermions in the fundamental (confinement, χ SB)
- Wilson plaquette gauge action
- Unimproved Wilson fermions
- $\underline{\theta}=\theta(1,1,1)$
- γ_{5} version of the Dirac-Wilson operator with $N_{f}=2$ fermions for reweighting
- Analyzed configurations at $\theta=0$:

V	β	$m_{\text {cr }}$	$N_{\text {cnf }}$	traj. sep.
16×8^{3}	2.2	-0.6	10^{3}	10
32×24^{3}	2.2	-0.65	394	20
32×24^{3}	2.2	-0.72	380	10

Going from $\mathbf{S U}(2)$ to $\mathbf{S U}(3)$ we expect that the reweighting factor is more difficult to estimate (obviously true at tree level)

Reweighting

Criteria for the stochastic estimation
Quantitive criteria to select when a sthocastic computation is good enough

$$
\frac{W_{\theta}}{\left\langle W_{\theta}\right\rangle} \geq 10 \text { only "few" times when } N_{\eta} \geq 200
$$

We want to kill the stochastic noise and to deal only with the quantum fluctuations from the gauge (otherwise averages are dominated by spikes)

Reweighting

Mean reweighting factor

$$
V=16 \times 8^{3}
$$

Plaquette

Reweight the plaquette

Interesting observable because it does not depend on the boundary condition

$$
L[\mathcal{U}]=\operatorname{Tr}\left(\prod_{\text {loop }} \mathrm{e}^{i \theta_{\mu} / N_{\mu}} U_{\mu}\right)=\operatorname{Tr}\left(\prod_{\text {loop }} U_{\mu}\right)=L[U]
$$

The reweighted plaquette is: $\langle L[\mathcal{U}]\rangle_{\theta}=\langle L[U]\rangle_{\theta}=\frac{\left\langle L[U] W_{\theta}\right\rangle_{0}}{\left\langle W_{\theta}\right\rangle_{0}}$
Errors are estimated with jackknife procedure currently we are neglecting autocorrelation

Plaquette: $V=16 \times 8^{3}$

Reweighted plaquette

Including the reweighting factor for only one flavour ($\sqrt{W_{\theta}}$ because $N_{f}=2$)

Plaquette: $V=16 \times 8^{3}$

Reweighted plaquette

Including the reweighting factor for both flavours

Pion correlator

Twisting the valence and reweighted correlator

$$
\text { Substitution: } \underline{p} \rightarrow \underline{p}^{\text {lat }}+\underline{\theta} / L
$$

- We twist only one flavour in the valence

Charged pion state with momentum $-\underline{\theta} / L$

- We reweight the correlator to include the twist in the sea $\left(\sqrt{W_{\theta}}\right)$

Pseudo-scalar correlator

- symmetrize in time the correlator (cosh behaviour)
- effective energy $m_{\text {eff }}\left(n_{t}\right)=\ln \frac{C\left(n_{t}\right)}{C\left(n_{t}+1\right)}$

Pion: $V=16 \times 8^{3}$

Dispersion relation

- Lattice free curve (black): $\cosh (a E)=3+\cosh \left(a m_{\pi}\right)-3 \cos \left(\frac{a \theta}{L}\right)$
- Continuum curve (blue): $E^{2}=m_{\pi}^{2}+3\left(\frac{\theta}{L}\right)^{2}$

Pion: $V=32 \times 24^{3}$

Dispersion relation

$$
m_{\mathrm{cr}} \simeq 0.72
$$

Conclusions and outlooks
$4 \square>4$ 号 >4 三 1 •

Conclusions

We employed the reweighting method to generate in a good way new configurations with different boundary conditions

- We performed the reweighting in the $\mathbf{S U}(2)$ theory
- We found a 1% effect in the reweighted plaquette (reweighting two flavours) and correlator at $\theta=\pi / 2$ in the case of small volume
- No sizeable effects in the case of bigger volumes
- We saw a systematic effect (upward) in the dispersion relation

In general the effects are small even at small volumes

Outlooks

Future goals

- Direct comparison with the actual simulation at a specific θ
- QED through reweighting, i.e. non-constant θ
- $g-2$
- Light-light scattering [Blum et al. Phys. Rev. Lett. 114 (2015) 1, 012001]

Backup slides

Tree level exact computation

An useful test in SU(3)

- Wilson fermions
- $N_{f}=1$
- $N_{C}=3$
- $V=4^{4}$
- $U=1$
- $m=0.2$

Tree level stochastic approximation

An useful test
We work with $Q=\gamma_{5} D_{W}$ and $N_{f}=2$ to fulfil the existence condition

$$
\operatorname{det}\left[D_{W, \text { tree }}(\theta) D_{W, \text { tree }}^{-1}(0)\right]^{2}=\operatorname{det}\left[Q_{\text {tree }}(\theta) Q_{\text {tree }}^{-1}(0)\right]^{2}
$$

- $Q=\gamma_{5} D_{W}$
- $N_{f}=2$
- $N_{C}=2$
- $V=8^{4}$
- $N_{\eta}=10^{3}$
- $U=1$
- $m=0.1$
- $\theta=0.1$

Tree level stochastic approximation

An useful test
Exact formula: $\sigma_{\eta}^{2}=\left[\operatorname{det}\left(Q+Q^{\dagger}-\mathbf{1}\right)\right]^{-1}-\left[\operatorname{det}\left(Q Q^{\dagger}\right)\right]^{-1}$

- $Q=\gamma_{5} D_{W}$
- $N_{f}=2$
- $N_{C}=2$
- $V=8^{4}$
- $N_{\eta}=10^{3}$
- $U=1$
- $m=0.1$
- $\theta=0.1$

Pion correlator

Lattice correlator

Pion correlator

- Correlator: $\langle\mathcal{O}(n) \overline{\mathcal{O}}(0)\rangle_{\mathrm{F}}=-\operatorname{Tr}\left[\gamma_{5} D_{u}^{-1}(n, 0) \gamma_{5} D_{d}^{-1}(0, n)\right]$
- Projection onto a definite $\left.\underline{p}_{\pi}:\left\langle\widetilde{\mathcal{O}}\left(\underline{p}_{\pi}, n_{t}\right) \overline{\mathcal{O}}(0)\right\rangle \underset{n_{t} \gg 1}{\sim}|\langle 0| \hat{O}| \pi\right\rangle\left.\right|^{2} \mathrm{e}^{-a n_{t} E\left(\underline{p}_{\pi}\right)}$

Charged pion state at rest
Tree level result:

$$
\int \mathrm{d}^{3} x\left\langle\widetilde{\mathcal{O}}\left(\underline{0}, x_{0}\right) \overline{\mathcal{O}}(x)\right\rangle_{\mathrm{F}} \underset{x_{0} \rightarrow \infty}{\propto} \frac{m^{1 / 2}}{x_{0}^{5 / 2}} \mathrm{e}^{-2 m x_{0}}
$$

Pion correlator: $V=16 \times 8^{3}$

Effective energy

Tiny effect at small volumes

