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Non-periodic boundary conditions (NPBC) Why NPBC

Non-periodic boundary conditions

3



Non-periodic boundary conditions (NPBC) Why NPBC

NPBC
Applications on the lattice

Fine resolution of momenta on
spatial direction

plat
j −→

NPBC
pj = plat

j +
θj
L

Form factors: an example is the
semi-leptonic decay K`3
[Boyle et al. Phys. Rev. Lett. 100 (2008) 141601]

Matching HQET-QCD
[Della Morte et al. JHEP 1405 (2014) 060]

Dispersion relation: useful check
[de Divitiis et al. Phys. Lett. B 595 (2004) 408]

K0 π+

d d

s uVus

W−
`−

ν`

〈π(p′)|Vµ|K (p)〉 =(p + p′)µ f+(q2)

+ (p − p′)µ f−(q2)

Finite volume observables

with different θ in SF

EH
(
plat = 0

)
=

√
m2

H +
|θ|2
L
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Non-periodic boundary conditions (NPBC) Why NPBC

NPBC
Problems and comments

Twisting only in the valence −→ Breaking of unitarity

Sea quark propagator: Valence quark propagator:

Im

( )
6=

( )∗
We expect that it is a finite volume effect: in χ-PT this is the case

[Sachrajda, Villadoro Phys. Lett. B 609 (2005) 73]

Reweighting can be used in small volume to compensate breaking of unitarity

Heuristic argument

“Almost-continuous” momenta case
θ reshuffles the momenta ⇒ no effect

Gap beetween momenta not negligible
Access to not permitted momenta values
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Non-periodic boundary conditions (NPBC) Why NPBC

NPBC
Twisting the sea

Direct simulations

NPBC
on the spatial direction

ψ (n + Nµµ̂) =

{
eiθjψ(n)
ψ(n)

momenta

pj = plat
j +

θj
L

ψ(x) ≡ eθj xj/NL ψ̃(x)
−→

←→

U(1) interaction
Aµ = (φ,Aj) = (0, θj/L)

B = ∇× A = 0
[Bedaque Phys. Lett. B 593 (2004) 82]

links

Uµ(n) =
{
eiθj/NLUj(n)
U4(n)
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Reweighting method

Reweighting method
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Reweighting method Idea and Integral representation of determinant

Reweighting
The idea of reweighting

a = {β,m1,m2, . . . ,mnf , θµ, . . . } HMC−→ b = {β′,m′1,m′2, . . . ,m′nf
, θ′µ, . . . }

Usually very expensive in computer time

The reweighting idea is to reuse the old configurations to “generate” new ones

〈O〉a =
1
N

N∑
i=1

Õ[Ui ] + O
(

1√
N

)
−→ 〈O〉b =

〈ÕWa,b〉a
〈Wa,b〉a

Reweighting factor

Pa[U] = e−SG[β,U]

nf∏
i=1

det (D[U] + mi ) , Wa,b =
Pb

Pa

Reweighting on the NPBC

Wθ = det
(
DW (θ)D−1

W (0)
)
= det

(
DW [U ]D−1

W [U]
)
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Reweighting method Idea and Integral representation of determinant

Reweighting
Applicability conditions and stochastic estimation

Integral representation of a normal matrix determinant, A ∈ Cn×n with spectrum
λ(A)

1
detA

=

∫
Dη exp

(
−η†Aη

)
<∞⇐⇒Reλ (A) > 0 [Finkenrath et al. Nucl. Phys. B 877 (2013) 441]

=

〈
e−η

†Aη

p(η)

〉
p(η)

=
1

Nη

Nη∑
k=0

e−η
†
k (A−1)ηk + O

(
1√
Nη

)
Existence of the gaussian moments (hermitian matrix)〈

e−2η†Aη

p(η)2

〉
p(η)

=

∫
Dη e−η†(2A−1)η <∞ ⇐⇒ λ (A) >

1
2

...〈
e−Nη†Aη

p(η)N

〉
p(η)

=

∫
Dη e−η†[NA−(N−1)1]η <∞ ⇐⇒ λ (A) >

N − 1
N

−→
N�1

1.
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Reweighting method Multi-step method

Reweighting
Multi-step method: Why?

For L large, at fixed theta the reweighting factor goes to one (at tree level)

L

W
θ
(θ

=
0
.1
)

322824201612840

1

0.8

0.6

0.4

0.2

0
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Reweighting method Multi-step method

Reweighting
Multi-step method: Why?

L

σ
(θ

=
0
.1
)

32282420161284

1e+08

1e+07

1e+06

100000

10000

1000

100

10

1

0.1

θ

σ
(L

=
8
)

0.70.60.50.40.30.20.10

1e+20

1e+18

1e+16

1e+14

1e+12

1e+10

1e+08

1e+06

10000

100

1

0.01

For large θ (or large L) we need to emply a multi-step method in order to keep the
error under control.
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Reweighting method Multi-step method

Reweighting
Multi-step method

Suppose now DW (θ)D−1
W (0) where θ is a parameter too large to trust the direct

stochastic estimation

We factorize our matrix in the following way

DW (θ)D−1
W (0) = A =

N−1∏
l=0

A`, with A` ' 1 + O (δθ`)

1
detA

=
N−1∏
`=0

〈
exp

(
−η(`),†Alη

(`)
)

p
(
η(`)
) 〉

p(η(`))
σ2 =

N−1∑
`=0

σ2
η(`)

∏
k 6=`

det (Ak)
−2


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Observables with reweighting

Observables with reweighting
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Observables with reweighting

Lattice setup
Action

SU(2), fermions in the fundamental (confinement, χSB)
Wilson plaquette gauge action
Unimproved Wilson fermions
θ = θ

(
1, 1, 1

)
γ5 version of the Dirac-Wilson operator with Nf = 2 fermions for reweighting
Analyzed configurations at θ = 0:

V β mcr Ncnf traj. sep.
16× 83 2.2 -0.6 103 10
32× 243 2.2 -0.65 394 20
32× 243 2.2 -0.72 380 10

Going from SU(2) to SU(3) we expect that the reweighting factor is more difficult
to estimate (obviously true at tree level)
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Observables with reweighting

Reweighting
Criteria for the stochastic estimation

Quantitive criteria to select when a sthocastic computation is good enough
Wθ

〈Wθ〉
≥ 10 only “few” times when Nη ≥ 200

We want to kill the
stochastic noise and to

deal only with the
quantum fluctuations

from the gauge
(otherwise averages are
dominated by spikes)

θ = 0.3, 4 steps, Nη = 1000
θ = 0.3, 4 steps, Nη = 200

Cfng label

W
θ
/
〈W

θ
〉

10009008007006005004003002001000

100

10

1

0.1
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Observables with reweighting

Reweighting
Mean reweighting factor

V = 16× 83

θ = 0.3, 10 steps
θ = 0.3, 4 steps

Nη

〈W
θ
〉

1000900800700600500400300200100

1.15

1.1

1.05

1

0.95

0.9

θ = π/2, 20 steps
θ = π/2, 15 steps

Nη

〈W
θ
〉

1000900800700600500400300200100

2.95

2.9

2.85

2.8

2.75

2.7

2.65

2.6

2.55

2.5

2.45

2.4

2.35
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Observables with reweighting Plaquette

Plaquette
Reweight the plaquette

Interesting observable because it does not depend on the boundary condition

L[U ] = Tr

∏
loop

eiθµ/NµUµ

 = Tr

∏
loop

Uµ

 = L[U]

The reweighted plaquette is: 〈L[U ]〉θ = 〈L[U]〉θ =
〈L[U]Wθ〉0
〈Wθ〉0

Errors are estimated with jackknife procedure
currently we are neglecting autocorrelation
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Observables with reweighting Plaquette

Plaquette: V = 16× 83
Reweighted plaquette

Including the reweighting factor for only one flavour (
√

Wθ because Nf = 2)

unreweighted plaquette
θ = 0.3, 10 steps
θ = 0.3, 4 steps

Nη

〈L
〉

1000900800700600500400300200100

0.6025

0.602

0.6015

0.601

0.6005

0.6

unreweighted plaquette
θ = π/2, 20 steps
θ = π/2, 15 steps

Nη

〈L
〉

1000900800700600500400300200100

0.6025

0.602

0.6015

0.601

18



Observables with reweighting Plaquette

Plaquette: V = 16× 83
Reweighted plaquette

Including the
reweighting factor for

both flavours

unreweighted plaquette
θ = π/2, 20 steps
θ = π/2, 15 steps

Nη

〈L
〉

1000900800700600500400300200100

0.603

0.6025

0.602

0.6015

0.601
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Observables with reweighting Pion dispersion relation

Pion correlator
Twisting the valence and reweighted correlator

Substitution: p → plat + θ/L

We twist only one flavour in the valence

γ5×γ5 ×

d →

u →

(
k0,−plat − θ/L

)

(
p0, plat

)


π± → (E ,−θ/L) Charged pion state

with momentum −θ/L

We reweight the correlator to include the twist in the sea (
√

Wθ)

Pseudo-scalar
correlator −→ symmetrize in time the correlator (cosh behaviour)

effective energy meff (nt) = ln C(nt)
C(nt+1)
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Observables with reweighting Pion dispersion relation

Pion: V = 16× 83
Dispersion relation

Lattice free curve (black): cosh (aE ) = 3+ cosh (amπ)− 3 cos
(

aθ
L

)
Continuum curve (blue): E 2 = m2

π + 3
(
θ

L

)2

lattice free curve
continuum curve

reweight data
valence twist data

θ/N

E
(θ
)

0.20.180.160.140.120.10.080.060.040.020

1.029

1.022

1.015

1.008

1.001

0.994

0.987

0.98

0.973

0.966

0.959

0.952

lattice free prediction
continuum prediction

reweighted data

θ/N

E
(θ
)

0.20.180.160.140.120.10.080.060.040.020

1.029

1.022

1.015

1.008

1.001

0.994

0.987

0.98

0.973

0.966

0.959

0.952
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Observables with reweighting Pion dispersion relation

Pion: V = 32× 243
Dispersion relation

mcr ' 0.65

lattice free curve
continuum curve

reweight data
valence twist data

θ/N

E
(θ
)

0.070.060.050.040.030.020.010

0.75

0.745

0.74

0.735

0.73

mcr ' 0.72

lattice free curve
continuum curve

reweight data
valence twist data

θ/N

E
(θ
)

0.070.060.050.040.030.020.010

0.465

0.46

0.455

0.45

0.445

0.44
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Conclusions and outlooks

Conclusions and outlooks
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Conclusions and outlooks

Conclusions

We employed the reweighting method to generate in a good way new
configurations with different boundary conditions

We performed the reweighting in the SU(2) theory
We found a 1%� effect in the reweighted plaquette (reweighting two flavours)
and correlator at θ = π/2 in the case of small volume
No sizeable effects in the case of bigger volumes
We saw a systematic effect (upward) in the dispersion relation

In general the effects are small even at small volumes
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Conclusions and outlooks

Outlooks

Future goals

Direct comparison with the actual simulation at a specific θ
QED through reweighting, i.e. non-constant θ

g − 2
Light-light scattering [Blum et al. Phys. Rev. Lett. 114 (2015) 1, 012001]
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Backup slides
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Tree level exact computation
An useful test in SU(3)

Wilson
fermions
Nf = 1
NC = 3
V = 44

U = 1
m = 0.2

θ = 0.5
θ = 0

ℜλ

ℑλ

876543210

3.0

2.0

1.0

0.0

-1.0

-2.0

-3.0

θ = 1
θ = 0

ℜλ
ℑλ

876543210

3.0

2.0

1.0

0.0

-1.0

-2.0

-3.0
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Tree level stochastic approximation
An useful test

We work with Q = γ5DW and Nf = 2 to fulfil the existence condition

det
[
DW ,tree(θ)D−1

W ,tree(0)
]2

= det
[
Qtree(θ)Q−1

tree(0)
]2

Q = γ5DW

Nf = 2
NC = 2
V = 84

Nη = 103

U = 1
m = 0.1
θ = 0.1

exact value
84: θ = 0.1, 2 steps
84: θ = 0.1, 1 step

Nη

(d
et
D

W
(θ
)/
D

W
(0
))

−
2

1000900800700600500400300200100

1.3

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

0.4
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Tree level stochastic approximation
An useful test

Exact formula: σ2
η =

[
det
(
Q + Q† − 1

)]−1 −
[
det
(
QQ†

)]−1

Q = γ5DW

Nf = 2
NC = 2
V = 84

Nη = 103

U = 1
m = 0.1
θ = 0.1

exact value
84: θ = 0.1, 2 steps
84: θ = 0.1, 1 step

Nη

σ
η

1000900800700600500400300200100

0.24

0.22

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02
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Pion correlator
Lattice correlator

Pion correlator

Correlator: 〈O(n)O(0)〉F = −Tr
[
γ5D−1

u (n, 0)γ5D−1
d (0, n)

]
Projection onto a definite p

π
: 〈Õ(p

π
, nt)O(0)〉 '

nt�1
|〈0|Ô|π〉|2 e−antE(p

π
)

γ5×γ5 ×

d →

u →

(
k0,−p

)

(
p0, p

)


π± → (mπ, 0)

Charged pion state at rest

Tree level result:∫
d3x 〈Õ(0, x0)O(x)〉F ∝

x0→∞
m1/2

x5/2
0

e−2mx0
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Pion correlator: V = 16× 83
Effective energy

θ = 0.3, 10 steps
twisted θ = 0.3 & unreweighted

untwisted & unreweighted

t

m
e
ff
(t
)

7654

1.06

1.05

1.04

1.03

1.02

1.01

1

0.99

0.98

0.97

0.96

0.95

θ = π/2, 20 steps
twisted θ = π/2 & unreweighted

untwisted & unreweighted

t

m
e
ff
(t
)

7654

1.1

1.08

1.06

1.04

1.02

1

0.98

0.96

0.94

Tiny effect at small volumes
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