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• We want to push further and perform systematic analysis

• using HISQ

• especially on finite volume effect


• Method:

• S is calculated from the slope of ΠV-A(q2) at q2→0


• ΠV-A=ΠV-ΠA


• ΠA/V is transverse component of vacuum polarization function for (axial) vector

• Exact chiral symmetry is mandatory, which guarantee no power div. contribution


• staggered extended chiral symmetry is sufficient: SU(Nf/4)V×SU(Nf/4)A

• HISQ is ideal for Nf=8 → exact SU(2)V×SU(2)A and SU(8)V×SU(8)A is also good


• practically convenient to take

• conserved current for sink                            → Ward-Takahashi identity   

• one-link(non-conserved) current for source → less inversion (numerical effort)

!

• renormalization needed for one-link operator

!

!

!

!

!

!

!

!

!

!

•                                                    (chiral symmetry)
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Walking Technicolor Theory (WTC) and S-parameter

!

• WTC is a candidate of BSM model for Higgs sector

• Nf=8 QCD is a candidate of WTC,


• which could realize 125 GeV Higgs as scalar composite (see talk by Ohki)

• Peskin-Takeuchi S parameter provides important constraint on composite models


• Ciucini et al JHEP1308 106 (MH=126GeV)
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• One calculation with Nf=8 QCD exists in the literature

• LSD collaboration using domain-wall fermions: PRD 2014 / PRL 2011


Some preliminary results

!

• V-A vacuum polarization function (transverse component)

	 	 	 2 volumes for  mf=0.015                            3 volumes for mf=0.04
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• S parameter contribution per EW doublet

!
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• spectrum of vector / axial vector mesons


!

!

!

!

!
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• finite volume effect tends to drive the spectrum to parity doubling


!

!

!

!

!

!

!

• Summary and Outlook


• S parameter is investigated for Nf=8 QCD

• staggered SU(Nf/4) vector & axial exact symmetry yields a clean calculation

• large “finite volume effect” on S, to drive it reduced, is observed

• axial vector meson mass has interesting volume effect

• further checks required for establish the observation

• for sure, one needs careful volume analysis for the S parameter

• more mass, volumes will be analyzed for a consistent picture of volume dep.

• idea of less noisy axial vector amplitude needed


• using non-conserved taste (local) with proper matching might help

S parameter 

• Ciucini et al JHEP1308 106 (MH=126GeV) J
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Large-mt expansion Using ref. [16, 83]

Parameter STU fit ST fit with U = 0 ST fit with U = 0

S 0.04± 0.10 0.06± 0.09 0.08± 0.10

T 0.05± 0.12 0.08± 0.07 0.10± 0.08

U 0.03± 0.09 — —

Table 4. Fit results for the oblique parameters with floating U or fixing U = 0, using the large-mt

expansion or with the results of ref. [16, 83] for the two-loop fermionic EW corrections to ⇢fZ . In
the latter case, we do not consider constraints from �Z , �0

h and R0

` .
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Figure 4. Left: two-dimensional probability distribution for the oblique parameters S and T
obtained from the fit with S, T , U and the SM parameters, with the large-mt expansion for the
two-loop fermionic EW corrections to ⇢fZ . Center: two-dimensional probability distribution for the
oblique parameters S and T obtained from the fit with S, T and the SM parameters with U = 0,
with the large-mt expansion for the two-loop fermionic EW corrections to ⇢fZ . The individual
constraints from MW , the asymmetry parameters sin2 ✓lept

e↵

, P pol

⌧ , Af and A0,f
FB

with f = `, c, b, and
�Z are also presented, corresponding to the combinations of parameters A, B and C in eq. (3.5).
Right: same as center, but using the results of ref. [16, 83]. In this case, the constraint from �Z

cannot be used.
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Eq. (19) is the same fitting function we used in Ref. [13];
subsequent studies [58, 59] have since provided more sys-
tematic support for using such rational functions to fit
the Q

2-dependence of vacuum polarization functions.
Finally, the subtraction of �SSM in Eq. (18) removes

from the spectrum the three NGBs eaten by the W and
Z, and sets S = 0 for the standard model with Higgs
mass MH = 125 GeV. Since we have not yet carried
out the computationally demanding calculation of the
(flavor-singlet scalar) Higgs mass in our lattice studies,
we take
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The first term in Eq. (21) would be appropriate if MH

were comparable to the TeV-scale vector meson mass
MV 0; the second term corrects this for the physical
MH = 125 GeV [66].

Computing S for fixed m from Eqs. 18 and 21, employ-
ing the thermalization cuts and jackknife blocks listed in
Table I, produces the 8-flavor results shown in Figure 11.
This figure also includes the Nf = 2 and 6 results pre-
viously published in Ref. [13], which we update to use
MH = 125 GeV rather than MH ⇠ 1000 GeV. As in pre-
vious sections, we plot S vs. M2

P /M
2
V 0 in order to provide

a more direct comparison between the three di↵erent the-
ories.

The S parameter is only well defined in the chiral limit
M

2
P /M

2
V 0 ! 0. However, chiral symmetry breaking with

Nf light but massive flavors produces N2
f �1 PNGBs. To

obtain the phenomenological S parameter, we must con-
sider a chiral limit in which only three of these PNGBs
become exactly massless NGBs to be identified with the
longitudinal components of the W and Z. The other
N

2
f � 4 PNGBs must remain massive enough to have

evaded experimental observation. (These PNGBs are
all pseudoscalars, not to be identified with the 125 GeV
Higgs, which comes from the flavor-singlet scalar spec-
trum that we have not yet investigated.)

For Nf = 2 this requirement simply reduces to the
linear M

2
P /M

2
V 0 ! 0 extrapolation shown in Figure 11,

which produces the non-perturbative result S = 0.42(2),
in agreement with the scaled-up QCD value S ⇡ 0.43
for MH = 125 GeV. When Nf > 2, keeping all the
fermion masses degenerate in the chiral limit would give
rise to additional massless NGBs that make a loga-
rithmically divergent contribution to S, proportional to
log

�
M

2
V 0/M

2
P

�
. The blue band in Figure 11 fits the three

Nf = 6 data points with the smallest M

2
P /M

2
V 0 . 1 to

the corresponding chiral form [55]. In a realistic con-
text, the N2

f �4 PNGBs remain massive, due to standard

FIG. 11. Electroweak S parameter with MH = 125 GeV, for
Nf = 2, 6 and 8 with ND = 1 fermion doublet assigned chiral
electroweak couplings in Eq. (18). Our results for Nf = 2 and
6 were previously published in Refs. [13, 55].

model and other interactions, which break this degener-
acy.
For Nf = 8, we cannot access M2

P /M
2
V 0 < 1 on 323⇥64

lattice volumes, making this sort of chiral fit unreason-
able. Even so, in Figure 11 we can observe the beginning
of a similar reduction in our 8-flavor results for S. The
Edinburgh-style plot in Figure 5 suggests that these re-
sults should be safe from finite-volume distortions. (The
lightest Nf = 2 and Nf = 6 points in Figure 11 use
mf = 0.005 and are omitted from Figure 5; finite-volume
e↵ects may be significant for this 6-flavor point.) Because
Nf = 8 is closer to the conformal window, we would ex-
pect this reduction to end up more significant than that
for Nf = 6 at smaller M

2
P /M

2
V 0, but this cannot be de-

termined from our current lattice results.

B. Vector and axial-vector parity doubling

The expected decrease in the S parameter for systems
near the conformal window is related to the onset of par-
ity doubling between the vector and axial-vector chan-
nels. This can be seen in Eq. (20), which follows from
the dispersion relation
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upon approximating each spectral function R(s) by a sin-
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Parity doubling in this context amounts to the statement
that RV (s) ⇡ RA(s), so that ⇧0

V�A(0) ⇡ 0.

• S decreases towards smaller mf for Nf=6

• Hint of similar trend for Nf=8

➡ good!

suggesting a suppression of S atNf¼6. This interpretation
requires care, however, since the extrapolationM2

P/m!0
is dominated by chiral logs for both Nf ¼ 2 and 6.

S-parameter results.—The S parameter [Eq. (1)] is sim-
ply the correlator slope multiplied by the number of elec-
troweak doublets, with the SM subtraction. We estimate
the SM subtraction by evaluating the !SSM integral in
Eq. (1) with an infrared cutoff at s ¼ 4M2

P, and taking
mH ¼ MV0. For the case 2MP <MV0,

!SSMðMPÞ ¼
1

12!

!
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: (3)

We use values forMP andMV0 determined in Ref. [1]. The
choice mH ¼ MV0 corresponds roughly to a 1 TeV value
for the reference Higgs boson mass.

In Fig. 3, we plot S % 4!ðNf=2Þ"0
V&Að0Þ & !SSM. For

Nf ¼ 2, the results are consistent with previous calcula-
tions [12,13]. The SM subtraction at Nf ¼ 2 is small,
reaching a value '0:04 for the lowest solid mass point,
corresponding to mf ¼ 0:010. A smooth extrapolation to
M2

P ¼ 0 is expected since the LO chiral logs eventually
appearing in"0

V&Að0Þ are canceled by the SM subtraction,
Eq. (3). We include a linear fit to the three solid points with
M2

P=M
2
V0 < 1. In this range, where chiral perturbation

theory should begin to be applicable, there can also be a
next-to-leading-order (NLO) term of the form M2

P logM
2
P,

but it is not visible in our data so we disregard it. The fit,
with error band, is shown in Fig. 3, giving Sm¼0 ¼ 0:32ð5Þ,
consistent with the value obtained using scaled-up QCD
data [10].

The Nf ¼ 6 results for S are also shown in Fig. 3. The
SM subtraction is again very small. For the higher mass
points, S is consistent with a value obtained by simply
scaling up the Nf ¼ 2 points by a factor of 3. The value of
S at the lower mass points, where M2

P=M
2
V0 < 1, begins to

drop well below its value at the higher mass points. This
trend has appeared at Nf ¼ 6 even though 6 ( Nc

f. AsM
2
P

is decreased further at Nf ¼ 6, S as computed here will
eventually turn up since the SM subtraction leaves the

chiral-log contribution ð1=12!Þ½N2
f=4& 1* logM&2

P . To es-

timate where this turn up sets in, we include a simple fit of
the form S ¼ Aþ BM2

P þ ð2=3!Þ logðM2
V0=M

2
PÞ to the

three points with M2
P=M

2
V0 < 1, disregarding a possible

M2
P logM

2
P term. This fit, with error band, is also shown

in Fig. 3. In a realistic context, the PNGBs receive mass
from SM and other interactions not included here, and
these masses provide the infrared cutoff in the logs.
Resonance spectrum.—A question of general interest for

an SUðNÞ gauge theory is the form of the resonance
spectrum as Nf is increased toward Nc

f. A trend toward

parity doubling, for example, would provide a striking
contrast with a QCD-like theory. If the gauge theory plays
a role in electroweak symmetry breaking, then this trend
could be associated with a diminished S parameter.
We have so far computed the masses, MV and MA, and

decay constants, FV and FA, of the lowest-lying vector and
axial resonances. We plot the masses along with their ratio
in Fig. 4. Since the solid data points (MPL> 4) are linear
with a small slope for each case except MA at Nf¼6, and
the NLO term in chiral perturbation theory is linear in
M2

P / m, we include a linear fit to all the solid points.
For Nf ¼ 2,MV extrapolates to 0.215(3) and for Nf ¼ 6 it
extrapolates to 0.209(3). The equality within errors of these
two masses in lattice units was arranged by the choice of
the lattice coupling in each case.
For Nf ¼ 2, the extrapolated value of MA=MV ¼

1:476ð40Þ is roughly consistent with the experimental re-
sult of 1.585(52) [14]. The Nf ¼ 6 data points for MA do
not yet allow a simple fit and extrapolation, However, they
do indicate a substantial decrease in MA=MV for
M2

P=M
2
V0 < 1, the same range for which the S parameter

begins to drop for Nf ¼ 6, indicating that the decrease in S
is indeed associated with a trend toward parity doubling.

FIG. 3 (color online). S parameter for Nf ¼ 2 (red triangles)
and Nf ¼ 6 (blue circles). For each of the solid points,
MPL> 4. The bands correspond to fits explained in the text.

FIG. 4 (color online). Axial and vector masses, MA and MV ,
and their ratio. Linear fits to the solid points (MPL> 4), with the
extrapolated values and errors shown to the left.
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• parity doubling may be responsible
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• parity doubling observed in the spectrum is consistent with the decrease
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Eq. (19) is the same fitting function we used in Ref. [13];
subsequent studies [58, 59] have since provided more sys-
tematic support for using such rational functions to fit
the Q

2-dependence of vacuum polarization functions.
Finally, the subtraction of �SSM in Eq. (18) removes

from the spectrum the three NGBs eaten by the W and
Z, and sets S = 0 for the standard model with Higgs
mass MH = 125 GeV. Since we have not yet carried
out the computationally demanding calculation of the
(flavor-singlet scalar) Higgs mass in our lattice studies,
we take
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The first term in Eq. (21) would be appropriate if MH

were comparable to the TeV-scale vector meson mass
MV 0; the second term corrects this for the physical
MH = 125 GeV [66].

Computing S for fixed m from Eqs. 18 and 21, employ-
ing the thermalization cuts and jackknife blocks listed in
Table I, produces the 8-flavor results shown in Figure 11.
This figure also includes the Nf = 2 and 6 results pre-
viously published in Ref. [13], which we update to use
MH = 125 GeV rather than MH ⇠ 1000 GeV. As in pre-
vious sections, we plot S vs. M2

P /M
2
V 0 in order to provide

a more direct comparison between the three di↵erent the-
ories.

The S parameter is only well defined in the chiral limit
M

2
P /M

2
V 0 ! 0. However, chiral symmetry breaking with

Nf light but massive flavors produces N2
f �1 PNGBs. To

obtain the phenomenological S parameter, we must con-
sider a chiral limit in which only three of these PNGBs
become exactly massless NGBs to be identified with the
longitudinal components of the W and Z. The other
N

2
f � 4 PNGBs must remain massive enough to have

evaded experimental observation. (These PNGBs are
all pseudoscalars, not to be identified with the 125 GeV
Higgs, which comes from the flavor-singlet scalar spec-
trum that we have not yet investigated.)

For Nf = 2 this requirement simply reduces to the
linear M

2
P /M

2
V 0 ! 0 extrapolation shown in Figure 11,

which produces the non-perturbative result S = 0.42(2),
in agreement with the scaled-up QCD value S ⇡ 0.43
for MH = 125 GeV. When Nf > 2, keeping all the
fermion masses degenerate in the chiral limit would give
rise to additional massless NGBs that make a loga-
rithmically divergent contribution to S, proportional to
log

�
M

2
V 0/M

2
P

�
. The blue band in Figure 11 fits the three

Nf = 6 data points with the smallest M

2
P /M

2
V 0 . 1 to

the corresponding chiral form [55]. In a realistic con-
text, the N2

f �4 PNGBs remain massive, due to standard

FIG. 11. Electroweak S parameter with MH = 125 GeV, for
Nf = 2, 6 and 8 with ND = 1 fermion doublet assigned chiral
electroweak couplings in Eq. (18). Our results for Nf = 2 and
6 were previously published in Refs. [13, 55].

model and other interactions, which break this degener-
acy.
For Nf = 8, we cannot access M2

P /M
2
V 0 < 1 on 323⇥64

lattice volumes, making this sort of chiral fit unreason-
able. Even so, in Figure 11 we can observe the beginning
of a similar reduction in our 8-flavor results for S. The
Edinburgh-style plot in Figure 5 suggests that these re-
sults should be safe from finite-volume distortions. (The
lightest Nf = 2 and Nf = 6 points in Figure 11 use
mf = 0.005 and are omitted from Figure 5; finite-volume
e↵ects may be significant for this 6-flavor point.) Because
Nf = 8 is closer to the conformal window, we would ex-
pect this reduction to end up more significant than that
for Nf = 6 at smaller M

2
P /M

2
V 0, but this cannot be de-

termined from our current lattice results.

B. Vector and axial-vector parity doubling

The expected decrease in the S parameter for systems
near the conformal window is related to the onset of par-
ity doubling between the vector and axial-vector chan-
nels. This can be seen in Eq. (20), which follows from
the dispersion relation
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upon approximating each spectral function R(s) by a sin-
gle pole,
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Parity doubling in this context amounts to the statement
that RV (s) ⇡ RA(s), so that ⇧0

V�A(0) ⇡ 0.
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We describe a lattice simulation of the masses and decay constants of the lowest-lying vector and axial

resonances, and the electroweak S parameter, in an SUð3Þ gauge theory with Nf ¼ 2 and 6 fermions in the

fundamental representation. The spectrum becomes more parity doubled and the S parameter per

electroweak doublet decreases when Nf is increased from 2 to 6, motivating study of these trends as

Nf is increased further, toward the critical value for transition from confinement to infrared conformality.
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Introduction.—In a recent Letter [1], we studied the
chiral properties of an SUð3Þ gauge theory with Nf mass-
less Dirac fermions in the fundamental representation as
Nf is increased from 2 to 6. We noted that the Nf ¼ 2
calculations are in good agreement with measured QCD
values, and that the Nf ¼ 6 results indicate substantial
enhancement of the chiral condensate. Here we extend
the study, presenting results for the electroweak S parame-
ter and for the lightest vector and axial resonances.

Lattice calculations of SUðNÞ gauge theories [2–6] sug-
gest infrared conformality exists for Nf values from the
onset of asymptotic freedom down to a critical value Nc

f. A

fixed point (whose value depends on the defining scheme)
governs the infrared behavior. Below this ‘‘conformal
window,’’ chiral symmetry breaking and confinement set
in. Even for Nf < Nc

f studies using continuum gap equa-

tions suggest that there can remain an approximate infrared
fixed point provided that 0<Nc

f $ Nf % Nc
f. The scale of

chiral symmetry breaking is small compared to some high
scale where asymptotic freedom sets in, and the fixed point
approximately governs the theory from the breaking scale
to this higher scale. This ‘‘walking’’ behavior leads to
chiral-condensate enhancement, which can address the
problem of obtaining large enough quark and lepton
masses in technicolor theories.

It has been suggested [7–9] that walking theories could
address another problem by leading to smaller values of the
electroweak S parameter. The value of S is related to the
spectrum of vector and axial resonances in the theory. As in
Ref. [1], we start with Nf ¼ 2, allowing us to check the
reliability of our methods by comparison with QCD phe-
nomenology. We then consider the Nf ¼ 6 theory in which

the coupling runs more slowly than in the Nf ¼ 2 theory,
but which is not yet truly walking. Proceeding carefully
toward Nc

f is prudent since the eventual appearance of

widely separated scales associated with walking is chal-
lenging for lattice methods.
We first compute the S parameter from the defining

current correlators, and then present results for the
lowest-lying vector and axial masses and decay constants.
We discuss our results along with the related Weinberg
spectral function sum rules, and then summarize.
S parameter.—The S parameter can be defined in terms

of the vector and axial current-correlation functions with,
by convention, the would-be Nambu-Goldstone-boson
(NGB) contribution to the standard-model (SM) radiative
corrections removed. With Nf=2 massless electroweak
doublets, it can be written as [10]

S ¼ 4!ðNf=2Þ½!0
VVð0Þ $!0

AAð0Þ' $ "SSM

¼ 1

3!

Z 1

0

ds

s

!
ðNf=2Þ½RVðsÞ $ RAðsÞ'

$ 1

4

"
1$

#
1$m2

H

s

$
3
"ðs$m2

HÞ
%&
; (1)

where !VVðQ2Þ and !AAðQ2Þ are the transverse correla-
tion functions for a single electroweak doublet, RðsÞ (
12! Im!0ðsÞ, and mH is the reference Higgs boson mass.
The presence of RVðsÞ $ RAðsÞ in the spectral integral
suggests that S could decrease if the resonance spectrum
becomes more parity doubled with increasing Nf.
For Nf ¼ 2, there are 3 NGBs, with the I3 ¼ )1 pair

leading to RVðsÞ ! 1=4 as s ! 0. [RAðsÞ ! 0.] The SM
subtraction removes the resultant infrared divergence.
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suggesting a suppression of S atNf¼6. This interpretation
requires care, however, since the extrapolationM2

P/m!0
is dominated by chiral logs for both Nf ¼ 2 and 6.

S-parameter results.—The S parameter [Eq. (1)] is sim-
ply the correlator slope multiplied by the number of elec-
troweak doublets, with the SM subtraction. We estimate
the SM subtraction by evaluating the !SSM integral in
Eq. (1) with an infrared cutoff at s ¼ 4M2

P, and taking
mH ¼ MV0. For the case 2MP <MV0,

!SSMðMPÞ ¼
1

12!

!
11

6
þ log

"
M2

V0

4M2
P

#$
: (3)

We use values forMP andMV0 determined in Ref. [1]. The
choice mH ¼ MV0 corresponds roughly to a 1 TeV value
for the reference Higgs boson mass.

In Fig. 3, we plot S % 4!ðNf=2Þ"0
V&Að0Þ & !SSM. For

Nf ¼ 2, the results are consistent with previous calcula-
tions [12,13]. The SM subtraction at Nf ¼ 2 is small,
reaching a value '0:04 for the lowest solid mass point,
corresponding to mf ¼ 0:010. A smooth extrapolation to
M2

P ¼ 0 is expected since the LO chiral logs eventually
appearing in"0

V&Að0Þ are canceled by the SM subtraction,
Eq. (3). We include a linear fit to the three solid points with
M2

P=M
2
V0 < 1. In this range, where chiral perturbation

theory should begin to be applicable, there can also be a
next-to-leading-order (NLO) term of the form M2

P logM
2
P,

but it is not visible in our data so we disregard it. The fit,
with error band, is shown in Fig. 3, giving Sm¼0 ¼ 0:32ð5Þ,
consistent with the value obtained using scaled-up QCD
data [10].

The Nf ¼ 6 results for S are also shown in Fig. 3. The
SM subtraction is again very small. For the higher mass
points, S is consistent with a value obtained by simply
scaling up the Nf ¼ 2 points by a factor of 3. The value of
S at the lower mass points, where M2

P=M
2
V0 < 1, begins to

drop well below its value at the higher mass points. This
trend has appeared at Nf ¼ 6 even though 6 ( Nc

f. AsM
2
P

is decreased further at Nf ¼ 6, S as computed here will
eventually turn up since the SM subtraction leaves the

chiral-log contribution ð1=12!Þ½N2
f=4& 1* logM&2

P . To es-

timate where this turn up sets in, we include a simple fit of
the form S ¼ Aþ BM2

P þ ð2=3!Þ logðM2
V0=M

2
PÞ to the

three points with M2
P=M

2
V0 < 1, disregarding a possible

M2
P logM

2
P term. This fit, with error band, is also shown

in Fig. 3. In a realistic context, the PNGBs receive mass
from SM and other interactions not included here, and
these masses provide the infrared cutoff in the logs.
Resonance spectrum.—A question of general interest for

an SUðNÞ gauge theory is the form of the resonance
spectrum as Nf is increased toward Nc

f. A trend toward

parity doubling, for example, would provide a striking
contrast with a QCD-like theory. If the gauge theory plays
a role in electroweak symmetry breaking, then this trend
could be associated with a diminished S parameter.
We have so far computed the masses, MV and MA, and

decay constants, FV and FA, of the lowest-lying vector and
axial resonances. We plot the masses along with their ratio
in Fig. 4. Since the solid data points (MPL> 4) are linear
with a small slope for each case except MA at Nf¼6, and
the NLO term in chiral perturbation theory is linear in
M2

P / m, we include a linear fit to all the solid points.
For Nf ¼ 2,MV extrapolates to 0.215(3) and for Nf ¼ 6 it
extrapolates to 0.209(3). The equality within errors of these
two masses in lattice units was arranged by the choice of
the lattice coupling in each case.
For Nf ¼ 2, the extrapolated value of MA=MV ¼

1:476ð40Þ is roughly consistent with the experimental re-
sult of 1.585(52) [14]. The Nf ¼ 6 data points for MA do
not yet allow a simple fit and extrapolation, However, they
do indicate a substantial decrease in MA=MV for
M2

P=M
2
V0 < 1, the same range for which the S parameter

begins to drop for Nf ¼ 6, indicating that the decrease in S
is indeed associated with a trend toward parity doubling.

FIG. 3 (color online). S parameter for Nf ¼ 2 (red triangles)
and Nf ¼ 6 (blue circles). For each of the solid points,
MPL> 4. The bands correspond to fits explained in the text.

FIG. 4 (color online). Axial and vector masses, MA and MV ,
and their ratio. Linear fits to the solid points (MPL> 4), with the
extrapolated values and errors shown to the left.
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Aµ = ZAAµ

ZA =
hA4(t)P (0)i
hA4(t)P (0)i

ZV = ZAVµ = ZV Vµ

• x axes: normalized with ρ mass in 
mf→0   (linearly extrapolated)


• Fixed L & mf↓ tends to reduce S

• Large finite volume effect observed 

• LSD results are superimposed

• x axes: mπL


• mπL ≲ 7  likely affected by finite 
volume effect 


➡8%↓ @ mf=0.015; L=42→36             
c.f. pion mass: 0.04%↓          
(zero consistent)

• Fρ ⋍ 2 Fπ   at chiral limit


• consistent with LSD 2014

• axial vector channel too noisy


• due to mixing with vector channel

• axial is an excited state

• weak point of staggered fermions

S-parameter and vector decay constant in QCD with eight fundamental fermions
!
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