The electric dipole moment of the neutron from $N_f = 2 + 1 + 1$ twisted mass fermions

Andreas Athenodorou*

University of Cyprus

July 16, 2015

The 33rd International Symposium on Lattice Field Theory Kobe International Conference Center, Japan

* With C. Alexandrou, M. Constantinou,K. Hadjiyianakou, K. Jansen, G. Koutsou,K. Ottnad and M. Petschlies

1. General Considerations

- The structure of the SM \sim role of the discrete symmetries C, P, T
- Experimental observation of neutron Electric Dipole Moment (nEDM) $|\vec{d}_N|$
 - $\rightarrow\,$ Flags violation of P and T

- $\rightarrow~$ Due to CPT symmetry \rightarrow violation of CP
- Induce *CP*-violation in QCD through:

$$\mathcal{L}_{\mathrm{CS}}(x) \equiv -i\theta \frac{1}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} \operatorname{Tr} \left[F_{\mu\nu}(x) F_{\rho\sigma}(x) \right] = -i\theta q(x) \,,$$

• Best experimental bound: $|\vec{d}_N| < 2.9 \times 10^{-13} e \cdot \text{fm}$ [C. A. Baker *et al*, Phys. Rev. Lett. **97**, 131801 (2006) [arXiv:hep-ex/0602020]]

• Model dependend studies as well as ChPT predictions:

 $|d_N| \sim \theta \cdot \mathcal{O}\left(10^{-2} \sim 10^{-3}\right) e \cdot \text{fm}. \quad \rightarrow \quad \theta \lesssim \mathcal{O}\left(10^{-10} \sim 10^{-11}\right)$

2. The nEDM: Definition

• Electric Dipole Moment (EDM) can be calculated by

$$|\vec{d}_N| = \lim_{Q^2 \to 0} \theta \frac{F_3(Q^2)}{2m_N} ,$$

- Need to extract CP-odd F.F. $F_3(0)$ for $\theta \neq 0!!!$
- How: through nucleon-nucleon matrix element of the electromagnetic current J_{μ}^{em}
- \rightarrow CP-odd electromagnetic F.F. $F_3(Q^2)$:

$$\langle N(\vec{p}_f, s_f) | J^{\rm em}_{\mu} | N(\vec{p}_i, s_i) \rangle = \bar{u}(\vec{p}_f, s_f) \left[\dots + \theta \frac{F_3(Q^2)}{2m_N} q_{\nu} \sigma_{\mu\nu} \gamma_5 + \dots \right] u(\vec{p}_i, s_i) ,$$

• Assuming a theory where *CP* symmetry is violated:

$$\langle \mathcal{O}(x_1,...,x_n) \rangle_{\theta} = \frac{1}{Z_0} \int d[U] d[\psi_f] d[\bar{\psi}_f] \ \mathcal{O}(x_1,...,x_n) \ e^{-S_{\text{QCD}} + i\theta \int q(x) d^4x}$$

• Extract $F_3(0)$ from perturbative expansion in θ :

$$\langle \mathcal{O}(x_1,...,x_n) \rangle_{\theta} = \langle \mathcal{O}(x_1,...,x_n) \rangle_{\theta=0} + \left\langle \mathcal{O}(x_1,...,x_n) \left(i\theta \int d^4 x q(x) \right) \right\rangle_{\theta=0} + O(\theta^2),$$

2. The nEDM: Definition

• Electric Dipole Moment (EDM) can be calculated by

$$|\vec{d}_N| = \lim_{Q^2 \to 0} \theta \frac{F_3(Q^2)}{2m_N} ,$$

- Need to extract CP-odd F.F. $F_3(0)$ for $\theta \neq 0!!!$
- How: through nucleon-nucleon matrix element of the electromagnetic current J_{μ}^{em}
- \rightarrow CP-odd electromagnetic F.F. $F_3(Q^2)$:

$$\langle N(\vec{p}_f, s_f) | J^{\rm em}_{\mu} | N(\vec{p}_i, s_i) \rangle = \bar{u}(\vec{p}_f, s_f) \left[\dots + \theta \frac{F_3(Q^2)}{2m_N} q_{\nu} \sigma_{\mu\nu} \gamma_5 + \dots \right] u(\vec{p}_i, s_i) ,$$

• Assuming a theory where *CP* symmetry is violated:

$$\langle \mathcal{O}(x_1,...,x_n) \rangle_{\theta} = \frac{1}{Z_0} \int d[U] d[\psi_f] d[\bar{\psi}_f] \ \mathcal{O}(x_1,...,x_n) \ e^{-S_{\text{QCD}} + i\theta \int q(x) d^4x}$$

• Extract $F_3(0)$ from perturbative expansion in θ :

$$\langle \mathcal{O}(x_1, ..., x_n) \rangle_{\theta} = \langle \mathcal{O}(x_1, ..., x_n) \rangle_{\theta=0} + \left\langle \mathcal{O}(x_1, ..., x_n) \left(i\theta \int d^4 x q(x) \right) \right\rangle_{\theta=0} + O(\theta^2) ,$$

= $\langle \mathcal{O}(x_1, ..., x_n) \rangle_{\theta=0} + i\theta \left\langle \mathcal{O}(x_1, ..., x_n) \mathcal{Q} \right\rangle_{\theta=0} + O(\theta^2) ,$

Consider the 3-pt function:

$$G_{3\text{pt}}^{\mu,(\theta)}(\vec{q},t_f,t_i,t) \equiv \langle J_N^{\theta}(\vec{p}_f,t_f) J_{\mu}^{\text{em}}(\vec{q},t) \overline{J}_N^{\theta}(\vec{p}_i,t_i) \rangle_{\theta} ,$$

Had we been able to generate gauge configurations with the full action:

$$\begin{aligned} G_{3\text{pt}}^{\mu,(\theta)}(\vec{q},t_{f},t_{i},t) &= |Z_{N}|^{2}e^{-E_{N}^{f}(t_{f}-t)}e^{-E_{N}^{i}(t-t_{i})}\frac{-i\gamma \cdot p_{f} + m_{N}(1+2i\alpha^{1}\theta\gamma_{5})}{2E_{N}^{f}} \\ &\times \left[W_{\mu}^{\text{even}}(q) + i\theta W_{\mu}^{\text{odd}}(q)\right]\frac{-i\gamma \cdot p_{i} + m_{N}(1+2i\alpha^{1}\theta\gamma_{5})}{2E_{N}^{i}} + O(\theta^{2}). \end{aligned}$$

• Treating the θ term perturbatively:

$$\begin{aligned} G_{3\text{pt}}^{\mu,(\theta)}(\vec{q},t_f,t_i,t) &= \langle J_N^{\theta=0}(\vec{p}_f,t_f) J_\mu^{\text{em}}(\vec{q},t) \overline{J}_N^{\theta=0}(\vec{p}_i,t_i) e^{i\theta\mathcal{Q}} \rangle_{\theta=0} \\ &= G_{3\text{pt}}^{\mu,(0)}(\vec{q},t_f,t_i,t) + i\theta G_{3\text{pt},\mathcal{Q}}^{\mu,(0)}(\vec{q},t_f,t_i,t) + O\left(\theta^2\right), \end{aligned}$$

with

$$G_{3\text{pt}}^{\mu,(0)}(\vec{q},t_f,t_i,t) = \langle J_N^{\theta=0}(\vec{p}_f,t_f) J_{\mu}^{\text{em}}(\vec{q},t) \overline{J}_N^{\theta=0}(\vec{p}_i,t_i) \rangle_{\theta=0},$$

$$G_{3\text{pt},\mathcal{Q}}^{\mu(0)}(\vec{q},t_f,t_i,t) = \langle J_N^{\theta=0}(\vec{p}_f,t_f) J_{\mu}^{\text{em}}(\vec{q},t) \overline{J}_N^{\theta=0}(\vec{p}_i,t_i) \mathcal{Q} \rangle_{\theta=0}.$$

$$\begin{aligned} G_{3\text{pt}}^{\mu,(\theta)}(\vec{q},t_{f},t_{i},t) &= |Z_{N}|^{2}e^{-E_{N}^{f}(t_{f}-t)}e^{-E_{N}^{i}(t-t_{i})}\frac{-i\gamma \cdot p_{f} + m_{N}(1+2i\alpha^{1}\theta\gamma_{5})}{2E_{N}^{f}} \\ &\times \left[W_{\mu}^{\text{even}}(q) + i\theta W_{\mu}^{\text{odd}}(q)\right]\frac{-i\gamma \cdot p_{i} + m_{N}(1+2i\alpha^{1}\theta\gamma_{5})}{2E_{N}^{i}} + O(\theta^{2}). \end{aligned}$$

$$\begin{aligned} G_{3\text{pt}}^{\mu,(\theta)}(\vec{q},t_f,t_i,t) &= \langle J_N^{\theta=0}(\vec{p}_f,t_f) J_\mu^{\text{em}}(\vec{q},t) \overline{J}_N^{\theta=0}(\vec{p}_i,t_i) e^{i\theta \mathcal{Q}} \rangle_{\theta=0} \\ &= G_{3\text{pt}}^{\mu,(0)}(\vec{q},t_f,t_i,t) + i\theta G_{3\text{pt},\mathcal{Q}}^{\mu,(0)}(\vec{q},t_f,t_i,t) + O\left(\theta^2\right), \end{aligned}$$

Equating the results from the two treatments:

$$\begin{split} G_{3\text{pt}}^{\mu,(0)}(\vec{q},t_{f},t_{i},t) &= |Z_{N}|^{2} e^{-E_{N}^{f}(t_{f}-t)} e^{-E_{N}^{i}(t-t_{i})} \frac{-i\gamma \cdot p_{f} + m_{N}}{2E_{N}^{f}} W_{\mu}^{\text{even}}(q) \frac{-i\gamma \cdot p_{i} + m_{N}}{2E_{N}^{i}}, \\ G_{3\text{pt}\mathcal{Q}}^{\mu,(0)}(\vec{q},t_{f},t_{i},t) &= |Z_{N}|^{2} e^{-E_{N}^{f}(t_{f}-t)} e^{-E_{N}^{i}(t-t_{i})} \Big[\frac{-i\gamma \cdot p_{f} + m_{N}}{2E_{N}^{f}} W_{\mu}^{\text{odd}}(q) \frac{-i\gamma \cdot p_{i} + m_{N}}{2E_{N}^{i}} \\ &+ \frac{\alpha^{1}m_{N}}{E_{N}^{f}} \gamma_{5} W_{\mu}^{\text{even}}(q) \frac{-i\gamma \cdot p_{i} + m_{N}}{2E_{N}^{i}} + \frac{-i\gamma \cdot p_{f} + m_{N}}{2E_{N}^{f}} W_{\mu}^{\text{even}}(q) \frac{\alpha^{1}m_{N}}{E_{N}^{i}} \gamma_{5} \Big]. \end{split}$$

with

$$W_{\mu}^{\text{even}}(q) = \gamma_{\mu} F_{1}(Q^{2}) - i \frac{F_{2}(Q^{2})}{2m_{N}} q_{\nu} \sigma_{\mu\nu}, \qquad W_{\mu}^{\text{odd}}(q) = -i \frac{F_{3}(Q^{2})}{2m_{N}} q_{\nu} \sigma_{\mu\nu} \gamma_{5} + F_{A}(Q^{2}) \left(q_{\mu} \gamma \cdot q - \gamma_{\mu} Q^{2}\right) \gamma_{5}.$$

Similarly for 2-pt functions:

$$G_{2pt}^{(\theta)}(q,t) = G_{2pt}^{(0)}(q,t) + i\theta G_{2pt,Q}^{(0)}(q,t) + O\left(\theta^{2}\right),$$

where

$$\begin{split} G^{(0)}_{2\mathrm{pt}}(\vec{q},t) &= & \langle J^{\theta=0}_{N}(\vec{q},t_{f})\overline{J}^{\theta=0}_{N}(\vec{q},t_{i})\rangle_{\theta=0} &= & |Z_{N}|^{2}e^{-E_{N}t}\frac{-i\gamma\cdot p+m_{N}}{2E_{N}}\,,\\ G^{(0)}_{2\mathrm{pt},\mathcal{Q}}(\vec{q},t) &= & \langle J^{\theta=0}_{N}(\vec{q},t_{f})\overline{J}^{\theta=0}_{N}(\vec{q},t_{i})\mathcal{Q}\rangle_{\theta=0} &= & |Z_{N}|^{2}e^{-E_{N}t}\frac{2\alpha^{1}m_{N}}{E_{N}}\gamma_{5}\,. \end{split}$$

• We need to measure the topological charge \mathcal{Q}

Equating the results from the two treatments:

$$\begin{split} G_{3\text{pt}}^{\mu,(0)}(\vec{q},t_{f},t_{i},t) &= |Z_{N}|^{2} e^{-E_{N}^{f}(t_{f}-t)} e^{-E_{N}^{i}(t-t_{i})} \frac{-i\gamma \cdot p_{f} + m_{N}}{2E_{N}^{f}} W_{\mu}^{\text{even}}(q) \frac{-i\gamma \cdot p_{i} + m_{N}}{2E_{N}^{i}}, \\ G_{3\text{pt}\mathcal{Q}}^{\mu,(0)}(\vec{q},t_{f},t_{i},t) &= |Z_{N}|^{2} e^{-E_{N}^{f}(t_{f}-t)} e^{-E_{N}^{i}(t-t_{i})} \Big[\frac{-i\gamma \cdot p_{f} + m_{N}}{2E_{N}^{f}} W_{\mu}^{\text{odd}}(q) \frac{-i\gamma \cdot p_{i} + m_{N}}{2E_{N}^{i}} \\ &+ \frac{\alpha^{1}m_{N}}{E_{N}^{f}} \gamma_{5} W_{\mu}^{\text{even}}(q) \frac{-i\gamma \cdot p_{i} + m_{N}}{2E_{N}^{i}} + \frac{-i\gamma \cdot p_{f} + m_{N}}{2E_{N}^{f}} W_{\mu}^{\text{even}}(q) \frac{\alpha^{1}m_{N}}{E_{N}^{i}} \gamma_{5} \Big]. \end{split}$$

with

$$W_{\mu}^{\text{even}}(q) = \gamma_{\mu} F_{1}(Q^{2}) - i \frac{F_{2}(Q^{2})}{2m_{N}} q_{\nu} \sigma_{\mu\nu}, \qquad W_{\mu}^{\text{odd}}(q) = -i \frac{F_{3}(Q^{2})}{2m_{N}} q_{\nu} \sigma_{\mu\nu} \gamma_{5} + F_{A}(Q^{2}) \left(q_{\mu} \gamma \cdot q - \gamma_{\mu} Q^{2}\right) \gamma_{5}.$$

Similarly for 2-pt functions:

$$G_{2pt}^{(\theta)}(q,t) = G_{2pt}^{(0)}(q,t) + i\theta G_{2pt,Q}^{(0)}(q,t) + O\left(\theta^{2}\right),$$

where

$$\begin{split} G^{(0)}_{2\mathrm{pt}}(\vec{q},t) &= \langle J_N^{\theta=0}(\vec{q},t_f)\overline{J}_N^{\theta=0}(\vec{q},t_i)\rangle_{\theta=0} &= |Z_N|^2 e^{-E_N t} \frac{-i\gamma \cdot p + m_N}{2E_N} ,\\ G^{(0)}_{2\mathrm{pt},\mathcal{Q}}(\vec{q},t) &= \langle J_N^{\theta=0}(\vec{q},t_f)\overline{J}_N^{\theta=0}(\vec{q},t_i)\mathcal{Q}\rangle_{\theta=0} &= |Z_N|^2 e^{-E_N t} \frac{2\alpha^1 m_N}{E_N} \gamma_5 . \end{split}$$

- We need to measure the topological charge \mathcal{Q}
- Get access to α^1 and F_3 [E. Shintani *et al*, Phys.Rev.D72:014504,2005, arXiv:hep-lat/0505022]

2. The nEDM: Pilot Study

Pilot study:

- Test the applicability of this method.
- Use an ensemble with large number of gauge confgs.
- \rightarrow B55.32, $N_f = 2 + 1 + 1$ twisted mass fermions, with **Iwasaki Gauge Action**:
 - -a = 0.0823(10) fm
 - $-M_{\pi}=0.372~{
 m GeV}$
 - $-r_0/a = 5.710(41)$
 - $-32^3 \times 64, L = 2.6 \text{ fm}$
 - No. of confs = 4623

[JHEP 1006:111 (2010)]

If convinced that it works:

- Go to the **physical pion mass**.
- Go to the **continuum limit**.

3. Topological charge: Definition

• Calculate the topological charge:

$$\mathcal{Q} = \int d^4 x q(x) \,.$$

- Improved definition $(O(a^4))$ for q(x): clover + rectangle clovers
- Smooth out ultraviolet fluctuations with **Cooling** and **Gradient-Flow**.
- Cooling exhibits equivalence with gradient flow when smoothing with Wilson Action:
 - Perturbatively $\tau \simeq n_c/3$

[C. Bonati and M. D'Elia, Phys. Rev. D 89, 105005 (2014) [arXiv:1401.2441]]

• Generalize the equivalence for Symanzik improved actions with rectangles $(c_0 + 8c_1 = 1)$:

$$S_{g} = \frac{\beta}{N} \sum_{x} \left(c_{0} \sum_{\substack{\mu,\nu=1\\1 \le \mu < \nu}}^{4} \left\{ 1 - \operatorname{ReTr}(U_{x,\mu,\nu}^{1 \times 1}) \right\} + c_{1} \sum_{\substack{\mu,\nu=1\\\mu \neq \nu}}^{4} \left\{ 1 - \operatorname{ReTr}(U_{x,\mu,\nu}^{1 \times 2}) \right\} \right),$$

Equivalence with $\tau \simeq n_c/(3 - 15c_1)$ [C. Alexandrou, A. A and K. Jansen, soon in arXiv]

Smoothing action	c_0	c_1	n_c/ au
Wilson	1	0	$\simeq 3$
Symanzik tr.level	$\frac{5}{3}$	$-\frac{1}{12}$	$\simeq 4.25$
Iwasaki	3.648	-0.331	$\simeq 7.965$

3. Topological charge: Equivalence between smoothers

Average action density - used as a common scale between smoothers:

Topological Charge distribution

3. Topological charge: Equivalence between smoothers

Topological Susceptibility: $\chi = \langle Q^2 \rangle / V$

Topological Charge History

4. Results on nEDM: Correlation Functions: 2-pt functions

- Calculate the plateau for $R_{2pt}(\alpha^1, t_f, t_i) = G_{2pt,\mathcal{Q}}^{(0)}(t_f, t_i, \gamma_5) / G_{2pt}^{(0)}(t_f, t_i, (\mathbb{1} + \gamma_0) / 2)$ $\Pi_{2pt}(\alpha^1) = \lim_{t_f - t_i \to \infty} R_{2pt}(\alpha^1, t_f, t_i) = \alpha^1,$
- Example of a plateau for Iwasaki action, gradient flow at $\tau = 6.3$

4. Results on nEDM: Calculation of α^1

 α^1 via cooling (n_c) and gradient flow (τ) for Wilson, Symanzik tree-level and Iwasaki action.

4. Results on nEDM: Correlation Functions: 3-pt functions

Build ratio $R_{3pt}^{\mu}(\vec{q}, t_f, t_i, t, \Gamma_k)$ with plateau:

$$\Pi_{3\text{pt}}^{0}(\Gamma_{k}) = \lim_{t_{f} - t \to \infty} \lim_{t \to \infty} \mathbb{R}_{3\text{pt}}^{0}\left(\vec{q}, t_{f}, t_{i}, t\right) .$$

$$= \sqrt{\frac{2m_{N}^{2}}{E_{N}\left(E_{N} + m_{N}\right)}} q_{k} \left[\frac{\alpha^{1}F_{1}\left(Q^{2}\right)}{2m_{N}} + \frac{(E_{N} + 3m_{N})\alpha^{1}F_{2}\left(Q^{2}\right)}{4m_{N}^{2}} + \frac{(E_{N} + m_{N})F_{3}\left(Q^{2}\right)}{4m_{N}^{2}}\right]$$

• Momentum q_k hinders a direct evaluation of $F_3(Q^2 = 0)$

- Usual parametrization in Q^2 and then fit with Dipole ansatz
- Continuum Derivative [D. Guadagnoli et al, JHEP 0304 (2003) 019, [arXiv:hep-lat/0210044]]
- Momentum Elimination [C. Alexandrou et al, PoS LATTICE2014 (2014) 075, [arXiv:1410.8818]]

4. Results on nEDM: Extraction of $F_3(0)$ via Dipole Fit

- Extract the plateau $\Pi^0_{3\text{pt}}(Q^2,\Gamma_k)$ for momentum transfer Q^2
- Use $F_1(Q^2)$, $F_2(Q^2)$ and α^1 to extract $F_3(Q^2)$

Examples:

• Parametrizing F_3 in momentum transfer Q^2 and perform a dipole fit:

$$F_3(Q^2) = \frac{F_3(0)}{\left(1 + \frac{Q^2}{m_{F_3}^2}\right)^2},$$

The nEDM: Extraction of $F_3(0)$ via Dipole fit

 $F_3(0)$ via cooling (n_c) and gradient flow (τ) for Wilson, Symanzik tree-level and Iwasaki smoothing actions:

4. Results on nEDM: Extraction of $F_3(0)$ via Continuum Derivative

Using the method of continuum derivative:

$$\lim_{q^2 \to 0} \frac{\partial}{\partial q_j} \Pi^0_{3\text{pt}} \left(\vec{q}, \Gamma_k \right) = \sqrt{\frac{2m_N^2}{E_N \left(E_N + m_N \right)}} \delta_{kj} \left[\frac{\alpha^1 F_1(0)}{2m_N} + \frac{\alpha^1 F_2(0)}{m_N} + \frac{F_3(0)}{2m_N} \right]$$

Build ratios:

$$\lim_{q^2 \to 0} \frac{\partial}{\partial q_j} \mathcal{R}^{\mu}_{3\text{pt}}(\vec{q}, t_f, t_i, t, \Gamma_k) = \lim_{L \to \infty} \frac{1}{G_{2\text{pt}}^{(0)}(\vec{q}, t_f, t_i, \Gamma_5)} \cdot \sum_{x=-L/2+a}^{L/2-a} i x_j G_{3\text{pt}, \mathcal{Q}}^{\mu, (0)}(\vec{x}, t_f, t_i, t, \Gamma_k),$$

- Requires position space correlators $G^{(0)}_{\mu J_N J^{\rm em}_{\mu} \mathcal{Q} J_N}(\vec{x}, t_f, t_i, t, \Gamma_k)$
- In finite volume this approximates the derivative of δ -function:

$$a^{3} \sum_{\vec{x}} ix_{j} G_{3\text{pt},\mathcal{Q}}^{\mu,(0)}(\vec{x},t_{f},t_{i},t,\Gamma_{k}) = \frac{1}{V} \sum_{\vec{k}} \left(a^{3} \sum_{\vec{x}} ix_{j} \exp\left(i\vec{k}\vec{x}\right) \right) G_{3\text{pt},\mathcal{Q}}^{\mu,(0)}(\vec{q},t_{f},t_{i},t,\Gamma_{k}),$$
$$= \frac{1}{(2\pi)^{3}} \int d^{3}\vec{k} \frac{\partial}{\partial k_{j}} \delta^{(3)}\left(\vec{k}\right) G_{3\text{pt},\mathcal{Q}}^{\mu,(0)}(\vec{k},t_{f},t_{i},t,\Gamma_{k}).$$

• Residual *t*-dependence $G_{3pt,Q}^{\mu,(0)}(\vec{q}, t_f, t_i, t, \Gamma_k) \sim \exp(-\Delta E_N t)$, with $\Delta E_N \to 0$ for $L \to \infty$ [W. Wilcox, Phys.Rev. D66 (2002) 017502, [arXiv:hep-lat/0204024]]

4. Results on nEDM: Extraction of $F_3(0)$ via Continuum Derivative

4. Results on nEDM: Extraction of $F_3(0)$ via Continuum Derivative

 $F_3(0)$ via cooling (n_c) and gradient flow (τ) for Wilson, Symanzik tree-level and Iwasaki smoothing actions:

4. Results on nEDM: Extraction of $F_3(0)$ via Momentum Elimination

Define a suitable ratio such that:

$$\Pi(q) \equiv \Pi_{3\text{pt}}^{0}(\Gamma_{k}) + \frac{i}{2}\alpha_{1}\Pi_{3\text{pt}}^{i,\theta=0}(\Gamma_{5}) + 2\alpha_{1}\Pi_{3\text{pt}}^{i,\theta=0}(\Gamma_{k}) = \frac{q_{k}}{4}\sqrt{\frac{(E_{N}+m_{N})}{2E_{N}m_{N}^{2}}}F_{3}(Q^{2}),$$

• On-axis momenta e.g. $\vec{q} = (\pm q, 0, 0)^T$

• Fourier transform on $\Pi(q) \to \Pi(y)$ in position space; with (n = y/a)

$$\Pi(y) = \begin{cases} +\Pi(n), & n = 0, \dots, N/2 \\ -\Pi(N-n), & n = N/2 + 1, \dots, N - 1, N = L/a \end{cases},$$

• Average over pos. and neg. y we get $\rightarrow \overline{\Pi}(n)$

• Finally transform back and introduce continuous momenta k:

$$\Pi(k) = \left[\exp(ikn)\overline{\Pi}(n)\right]_{n=0, N/2} + 2i\sum_{n=1}^{N/2-1}\overline{\Pi}(n)\sin\left(\frac{k}{2}\cdot(2n)\right)$$

We define $\hat{k} \equiv 2\sin\left(\frac{k}{2}\right)$ and $P_n(\hat{k}^2) = P_n\left(\left(2\sin\left(\frac{k}{2}\right)\right)^2\right) = \sin(nk)/\sin\left(\frac{k}{2}\right)$ and obtain:

$$\Pi(\hat{k}) - \Pi(0) = i \sum_{n=1}^{N/2-1} \hat{k} P_n \left(\hat{k}^2\right) \overline{\Pi}(n) \,.$$

 $P_n(\hat{k}^2)$ is related to Chebyshev polynomials of the 2nd kind

4. Results on nEDM: Extraction of $F_3(0)$ via Momentum Elimination

By applying the derivative in respect to \hat{k} :

$$\frac{F_3(\hat{k}^2)}{2m_N} = i \sum_{n=1}^{N/2-1} P_n(\hat{k}^2) \,\overline{\Pi}(n) \,,$$

- Generalize to off-axis momentum classes $M(q, q_{\text{off}}^2) = \{\vec{q} \mid \vec{q} = \{\pm q, q_1, q_2\}, q_1^2 + q_2^2 = q_{\text{off}}^2\}$ where $\{\pm q, q_1, q_2\}$ denotes all possible permutations of $\pm q, q_1$ and q_2
- To combine results for $F_3(Q^2)/(2m_N)$ for different momentum classes q_{off} and arrive at (Euclidean) $Q^2(\hat{k}, q_{\text{off}}^2) = 0$: Analytic Continuation:

$$k \rightarrow i\kappa$$
$$\hat{k} \rightarrow i\hat{\kappa} = -2\sinh\left(\frac{\kappa}{2}\right)$$
$$P_n(\hat{k}^2) \rightarrow P_n(\hat{\kappa}^2) = \sinh(n\kappa) / \sinh\left(\frac{\kappa}{2}\right)$$

Final formular takes similar form:

$$\frac{F_3(\hat{\kappa}^2)}{2m_N} = i \sum_{n=1}^{N/2-1} P_n(\hat{\kappa}^2) \,\overline{\Pi}(n) \,,$$

Combine results from different sets of $M(q, q_{\text{off}}^2)$ by taking the error weighted average.

4. Results on nEDM: Extraction of $F_3(0)$ via Momentum Elimination

 $F_3(Q^2)/2m_N$ via cooling $(n_c = 50)$ for Iwasaki smoothing action extracted for $q_{\text{offmax}}^2 = 5(2\pi/L)^2$

(▲) Ottnad *et. al.* ChPT, [arXiv:0911.3981 [hep-ph]], (■) Shintani *et al*, PoS(LATTICE 2013)298,
 (▼) Shintani *et al* [arXiv:0803.0797].

Different configurations of momentum treatments, smoothers, smoothing actions

- Open symbols: cooling, Filled symbols: gradient flow
- Dipole Fit, Continuum Derivative, $F_2(0)$ via dipole fit, Continuum Derivative, $F_2(0)$ via momentum elimination, Momentum Elimination

Different configurations of smoothers, smoothing actions

• Open symbols: cooling, Filled symbols: gradient flow

Now using $|\vec{d}_N| < 2.9 \times 10^{-13} e \cdot \text{fm} \dots$

Open symbols: cooling, Filled symbols: gradient flow

- Calculate the nEDM for B55.32 at $M_{\pi} \simeq 370$ MeV.
- Implemented three momentum dependence treating techniques:
 - Dipole fit
 - Continuum Derivative
 - Momentum Elimination
- Implemented two smoothers and demonstrated equivalence
 - Cooling
 - Gradient Flow
- Used three smoothing actions:
 - Wilson
 - Symanzik tree-level improved
 - Iwasaki
- All combinations give similar results!
- Our result agrees with older estimations

THANK YOU!

Appendix 1: Topological charge

Calculate the topological charge:

$${\cal Q}=\int d^4x q(x)\, .$$

• On the lattice:

$$q(x) = \frac{1}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} \operatorname{Tr} \left\{ F_{\mu\nu} F_{\rho\sigma} \right\}.$$

Improved definition $O(a^4)$:

$$q(x) = c_0 q_L^{\text{clov}}(x) + c_1 q_L^{\text{rect}}(x) \,,$$

with $c_0 = 5/3$ and $c_1 = -1/12$ as well as

$$q_L^{\text{clov}}(x) = \frac{1}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} \operatorname{Tr}\left(C_{\mu\nu}^{\text{clov}} C_{\rho\sigma}^{\text{clov}}\right) \quad \text{and} \quad q_L^{\text{rect}}(x) = \frac{2}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} \operatorname{Tr}\left(C_{\mu\nu}^{\text{rect}} C_{\rho\sigma}^{\text{rect}}\right) \,,$$

where

$$C_{\mu\nu}^{\text{clov}}(x) = \frac{1}{4} \text{Im} \left(\boxed{} \right) \quad \text{and} \quad C_{\mu\nu}^{\text{rect}}(x) = \frac{1}{8} \text{Im} \left(\boxed{} + \boxed{} \right) \right)$$

Smooth out ultraviolet fluctuations...

Appendix 2: Extraction of $F_3(0)$ via Momentum Elimination

First use:

$$\Pi_{3\text{pt}}^{i,\theta=0}(\Gamma_{5}) = -\frac{i}{2m_{N}}\sqrt{\frac{2m_{N}^{2}}{E_{N}(E_{N}+m_{N})}}q_{i}\left(F_{1}\left(Q^{2}\right) + \frac{q^{2}}{4m_{N}^{2}}F_{2}\left(Q^{2}\right)\right),$$

$$\Pi_{3\text{pt}}^{i,\theta=0}(\Gamma_{k}) = -\frac{1}{4m_{N}}\sqrt{\frac{2m_{N}^{2}}{E_{N}(E_{N}+m_{N})}}\epsilon_{ijk}q_{j}\left(F_{1}\left(Q^{2}\right) + F_{2}\left(Q^{2}\right)\right),$$

In order to define:

$$\Pi(q) \equiv \Pi_{3\text{pt}}^{0}(\Gamma_{k}) + \frac{i}{2}\alpha_{1}\Pi_{3\text{pt}}^{i,\theta=0}(\Gamma_{5}) + 2\alpha_{1}\Pi_{3\text{pt}}^{i,\theta=0}(\Gamma_{k}) = \frac{q_{k}}{4}\sqrt{\frac{(E_{N}+m_{N})}{2E_{N}m_{N}^{2}}}F_{3}(Q^{2}),$$

• On-axis momenta e.g.
$$\vec{q} = (\pm q, 0, 0)^T$$

Fourier transform on $\Pi(q) \to \Pi(y)$ in position space; with (n = y/a)

$$\Pi(y) = \begin{cases} +\Pi(n), & n = 0, \dots, N/2 \\ -\Pi(N-n), & n = N/2 + 1, \dots, N - 1, N = L/a \end{cases},$$

Average over pos. and neg. y we get $\rightarrow \overline{\Pi}(n)$

Appendix 2: Extraction of $F_3(0)$ via Momentum Elimination

Finally transform back and introduce continuous momenta k:

$$\Pi(k) = \left[\exp(ikn)\overline{\Pi}(n)\right]_{n=0, N/2} + \sum_{n=1}^{N/2-1} \exp(ikn)\overline{\Pi}(n) + \sum_{n=N-1}^{N/2+1} \exp(ik(N-n))\overline{\Pi}(n)$$
$$= \left[\exp(ikn)\overline{\Pi}(n)\right]_{n=0, N/2} + 2i\sum_{n=1}^{N/2-1}\overline{\Pi}(n)\sin\left(\frac{k}{2}\cdot(2n)\right)$$

We define $\hat{k} \equiv 2\sin\left(\frac{k}{2}\right)$ and $P_n\left(\hat{k}^2\right) = P_n\left(\left(2\sin\left(\frac{k}{2}\right)\right)^2\right) = \sin(nk) / \sin\left(\frac{k}{2}\right)$ and obtain:

$$\Pi(\hat{k}) - \Pi(0) = i \sum_{n=1}^{N/2-1} \hat{k} P_n \left(\hat{k}^2\right) \overline{\Pi}(n) \,.$$

- $P_n(\hat{k}^2)$ is related to Chebyshev polynomials of the 2nd kind
- By applying the derivative in respect to \hat{k} :

$$\frac{F_3(\hat{k}^2)}{2m_N} = i \sum_{n=1}^{N/2-1} P_n(\hat{k}^2) \,\overline{\Pi}(n) \,,$$

Appendix 2: Extraction of $F_3(0)$ via Momentum Elimination

Can generalize to off-axis momentum classes

$$M(q, q_{\text{off}}^2) = \left\{ \vec{q} \mid \vec{q} = \{ \pm q, q_1, q_2 \}, \ q_1^2 + q_2^2 = q_{\text{off}}^2 \right\}$$

where $\{\pm q, q_1, q_2\}$ denotes all possible permutations of $\pm q, q_1$ and q_2

To combine results for $F_3(Q^2)/(2m_N)$ for different momentum classes q_{off} and arrive at (Euclidean) $Q^2(\hat{k}, q_{\text{off}}^2) = 0$: Analytic Continuation:

$$k \rightarrow i\kappa$$
$$\hat{k} \rightarrow i\hat{\kappa} = -2\sinh\left(\frac{\kappa}{2}\right)$$
$$P_n(\hat{k}^2) \rightarrow P_n(\hat{\kappa}^2) = \sinh(n\kappa) / \sinh\left(\frac{\kappa}{2}\right)$$

Final formular takes similar form:

$$\frac{F_3(\hat{\kappa}^2)}{2m_N} = i \sum_{n=1}^{N/2-1} P_n(\hat{\kappa}^2) \,\overline{\Pi}(n) \,,$$

Combine results from different sets of $M(q, q_{off}^2)$ by taking the error weighted average.