A lattice study of the nucleon quark content at the physical point

Christian Torrero for the Budapest-Marseille-Wuppertal (BMW) collaboration

Centre de Physique Théorique Aix-Marseille Université

XXXIII International Symposium on Lattice Field Theories Kobe - July 16, 2015

Christian Torrero A lattice study of the nucleon quark content at the physical point

- 2 Definitions and data collection
- 3 Data analysis part I: fit strategy
- 4 Data analysis part II: assessing statistical and systematic errors

5 Conclusions

The nucleon up-down and strange quark content f_{udN} and f_{sN} are observables of great interest given their relation to

- the quark-mass ratio m_{ud}/m_s ;
- πN and K N scattering;
- counting rates in Higgs-Boson searches;
- direct detection of dark matter (DM).

Estimates from phenomenology do not agree with each other and have large uncertainties \longrightarrow need for ab-initio computations of strong-interaction effects.

Computations already exist (FH = Feynman-Hellmann, ME = Matrix Element):

However, most calculations employ model assumptions and/or have incomplete error analyses.

The nucleon up-down and strange quark content f_{udN} and f_{sN} are defined as

$$f_{udN} \equiv m_{ud} \frac{\langle N | \bar{u}u + \bar{d}d | N \rangle}{M_N} , \qquad f_{sN} \equiv m_s \frac{\langle N | \bar{s}s | N \rangle}{M_N} .$$

A possible strategy to compute them consists of relying on the Feynman-Hellmann theorem, i.e.,

$$f_{udN} = \left. \frac{m_{ud}}{M_N} \frac{\partial M_N}{\partial m_{ud}} \right|_{\Phi} , \qquad f_{sN} = \frac{m_s}{M_N} \frac{\partial M_N}{\partial m_s} \right|_{\Phi} ,$$

where derivatives have to be computed at the physical point (Φ) .

Main advantages of this approach:

- need for 2-point functions only;
- no disconnected contributions.

Some technical details:

- tree-level improved Symanzik gauge action (S_G) and clover-improved Wilson action (S_F);
- 2-HEX link-smearing in S_F ;
- $N_f = 2 + 1;$
- 47 ensembles corresponding to about 13000 overall configurations with
 - 0.054 *fm* ≤ *a* ≤ 0.116 *fm*;
 - pion mass M_{π} down to \leq 120 *MeV*;
 - box size up to \approx 6 *fm*;
- full non-perturbative renormalization of quark masses in the Renormalization Group Invariance (RGI) scheme (as in BMWc, JHEP 1108).

As it is well known, the mass of a given particle p can be extracted from a time correlator $C_p(t, t_S)$

$$C_{\rho}(t,t_{S}) = a^{3} \sum_{\vec{x}} \langle O_{\rho}(x) O_{\rho}^{\dagger}(x_{S}) \rangle ,$$

with *a* being the lattice spacing, *t* the time component of point $x = (t, \vec{x})$ in the 4*D* discretized spacetime and where $O_p(x)$ is an interpolating operator capable of creating a hadron *p* out of the vacuum.

Assessing when the asymptotics sets in is a non-trivial problem, usually solved by relying on eye judgement and/or by looking for a good fit quality.

We have introduced a more systematic method which consists of carrying out the Kolmogorov-Smirnov (KS) test, quantifying the distance *D* between the empirical cumulative distribution function (ECDF) $F_n(x)$ and the reference cumulative distribution function F(x). More precisely,

 $D = \sup_{x} |F_n(x) - F(x)| .$

In the present case, starting from the mass fits on the 47 ensembles, the KS test is carried out — for each particle — on the cumulative distribution of the fit qualities (i.e., x in the formula above corresponds to the p-value): the distance D is then used to define a significance level P that the measured distribution originates from the uniform one.

The KS test is repeated for different starting time slices t_{min} and varying plateau length *L* till P > 0.3.

Motivation Definitions and data collection

Data analysis - part I: fit strategy

Data analysis - part II: assessing statistical and systematic errors Conclusions

Figure 1: comparison between ECDF and F(x) for the fits of M_{Ω} with $t_{min} = 0.8$ fm, $t_{max} \in [1.0, 1.4]$ fm, L = 6, D = 0.36 and $P = 5 \cdot 10^{-6}$.

Motivation Definitions and data collection

Data analysis - part I: fit strategy

Data analysis - part II: assessing statistical and systematic errors Conclusions

Figure 2: same as Fig. 1 but with $t_{min} = 1.0$ fm, $t_{max} \in [1.2, 1.6]$ fm, L = 6, D = 0.12, P = 0.47.

An example of functional form — with experimental input and fit parameters — employed in the fit reads

$$aM_{X} = a \left\{ M_{X}^{(\Phi)} + \sum_{i} c_{X,ud,i} \left[\frac{am_{ud} Z_{s}^{-1}(\beta)}{a(1 + d_{ud} a^{2})} - m_{ud}^{(\Phi)} \right]^{i} + \sum_{j} c_{X,s,j} \left[\frac{am_{s} Z_{s}^{-1}(\beta)}{a(1 + d_{s} a^{2})} - m_{s}^{(\Phi)} \right]^{j} \right\},$$

with $X = \Omega$ (for scale setting), N, π and K^{χ} with $m_{K^{\chi}} = m_K^2 - \frac{1}{2}m_{\pi}^2$. $M_N^{(\Phi)}$ was actually also considered as a fit parameter.

The masses of these four particles are fitted at the same time, i.e. the corresponding functionals share the same fit parameters - with the exception of the $c_{X,ud,i}$'s and $c_{X,s,i}$'s.

Quark masses in the functional above are obtained through the ratio-difference method (BMWc, JHEP 1108).

Fit parameters $c = \{a, m_{ud}^{(\phi)}, m_s^{(\phi)}, \ldots\}$ of functions $f^{(i)}(c, x)$ — with i = 1, 2, 3, 4 and $x = \{am_{ud}, am_s\}$ — are determined by minimizing a χ^2 function defined as

$$\chi^2 = V^T C^{-1} V \,,$$

where C is the covariance matrix associated to the entries of the column vector V whose structure reads

$$V = (y_1^{(1)} - f^{(1)}(c, x_1), \ldots, y_n^{(4)} - f^{(4)}(c, x_n), x_1 - q_1, x_2 - q_2, \ldots, x_n - q_n),$$

where q_i is the value of variable x_i obtained in simulation *i*.

Entries of matrix C are obtained via a bootstrap procedure with $n_{boot} = 2000$.

All fits are correlated.

Motivation Definitions and data collection Data analysis - part I: fit strategy

Data analysis - part II: assessing statistical and systematic errors Conclusions

Figure 3: typical dependence of M_N vs. m_{ud}^{RGI} . The black point corresponds to the physical point while the horizontal line in brown to $M_N^{(\Phi)}$.

Motivation Definitions and data collection

Data analysis - part I: fit strategy

Data analysis - part II: assessing statistical and systematic errors Conclusions

Figure 4: same as Fig. 3 but vs. m_s^{RGI} .

Christian Torrero A lattice study of the nucleon quark content at the physical point

To estimate the systematic uncertainties on results, different strategies have been considered in the fitting procedure:

- choosing two different time intervals for the asymptotic behaviour of $C_{\rho}(t, 0)$;
- pruning the data with two cuts in the pion mass (at 380 MeV and 480 MeV);
- taking into account six different procedures in computing Z_S (as in BMWc, JHEP 1108);
- considering different parametrizations for m_{ud} and m_s dependence of baryons (polynomials vs. Padé);
- allowing for different cutoff effects, i.e.

$$\frac{am_{ud}Z_s^{-1}(\beta)}{a(1+d_{ud}a^2)} \longrightarrow \frac{am_{ud}Z_s^{-1}(\beta)}{a(1+d_{ud}\alpha_s a)}$$

This results in $2 \cdot 2 \cdot 6 \cdot 2 \cdot 2 = 96$ fitting strategies altogether.

The systematics is subsequently evaluated by means of the Akaike Information Criterion, i.e. for the i^{th} fitting procedure the AIC value AIC_i

 $AIC_i = 2k_i - 2In(L_i) = 2k_i + \chi^2$,

is computed, being k_i the number of fit parameters and L_i the value of the likelihood function at its minimum.

The mean value and systematic error of a generic fit parameter c_i are obtained by computing, respectively, the weighted mean standard deviation of the values of c_i resulting from the different fitting procedures with the weight ω_i given by

$$\omega_i = \exp[(AIC_{min} - AIC_i)/2] ,$$

where AIC_{min} is the lowest of the AIC_i's.

The bootstrap error on the mean provides the statistical error.

Latest results read

$$f_{udN} = 0.0386(19)(7) , \qquad f_{sN} = 0.103(44)(2) , \qquad \blacksquare$$

while the estimate obtained for M_N is given by

$$M_N = 942(13)(2) \text{ MeV}$$
,

in agreement with the experimental value $M_N = 938.9$ MeV.

Motivation Definitions and data collection Data analysis - part I: fit strategy

Data analysis - part II: assessing statistical and systematic errors

Conclusions

Figure 5: AIC-weighted distribution of the values of f_{udN} combining statistical and systematic error.

Conclusions

Figure 6: same as Fig. 5 but for f_{sN} .

Conclusions

- a complete investigation of different sources of systematic uncertainties has been carried out;
- errorbars are still a bit large, at least on f_{sN}.

Outlook

- more lever arm on m_s and smaller statisticl errors are needed to improve the precision on f_{sN};
- work on spin-dependent coupling has begun.