

Two-nucleon scattering in multiple partial waves

Amy Nicholson, UC Berkeley for the CalLat Collaboration

33rd International Symposium On Lattice Field Theory Kobe, Japan July 2015

CalLat

- LBL/UCB: Wick Haxton, Thorsten Kurth, AN, Ken McElvain, Mark Strother
- LLNL: Robert Falgout, Ron Soltz, Pavlos Vranas, Chris Schroeder, Evan Berkowitz, Enrico Rinaldi, Joe Wasem
- SDSU: Calvin Johnson
- nVidia: Michael Clark
- BNL: Sergey Syritsyn
- JLab: Raul Briceno, André Walker-Loud (JLab/W&M)

CalLat

•

- LBL/UCB: Wick Haxton, Thorsten Kurth, AN, Ken McElvain, Mark Strother
- LLNL: Robert Falgout, Ron Soltz, Pavlos Vranas, Chris Schroeder, Evan Berkowitz, Enrico Rinaldi, Joe Wasem
- SDSU: Calvin Johnson
- nVidia: Michael Clark
- BNL: Sergey Syritsyn

JLab Raul Briceno, André Walker-Loud (JLab/W&M)

Nucleon-nucleon scattering

Nuclear physics on the lattice is difficult!

Nucleon-nucleon scattering

- Nuclear physics on the lattice is difficult!
- Must have full control over 2-body systems
 - How do we project onto desired states?

- * How do we disentangle signals from closely spaced energy levels?
- How do we interpret finite volume results?

Nucleon-nucleon scattering

- Nuclear physics on the lattice is difficult!
- Must have full control over 2-body systems
 - How do we project onto desired states?
 - * How do we disentangle signals from closely spaced energy levels?
 - How do we interpret finite volume results?
- * Lattice QCD lets us explore dependence on S.M. parameters experiment does not
 - Nucleon scattering is finely tuned
 - Useful input for EFTs and models
- Necessary to study scattering to determine 2-body matrix elements

Overview

- Finite volume method
- Correlation functions
- Lattice details
- Spectrum
- Phase shifts
- Conclusions

Finite volume method

 Lüscher's method relates finite volume energies to infinite volume scattering shifts

$$\begin{split} p \cot \delta(p) &= \frac{1}{\pi L} S \left(\left(\frac{pL}{2\pi} \right)^2 \right) \\ S(\eta) &= \lim_{\Lambda \to \infty} \left[\sum_{\mathbf{j}}^{|\mathbf{j}| < \Lambda} \frac{1}{|\mathbf{j}|^2 - \eta^2} - 4\pi \Lambda \right] \end{split}$$

 Partial waves mix in a box (and in real life!), so the relation becomes a matrix eigenvalue equation

$$\det_{Jm_J\ell S} \left[\mathcal{M}^{-1} + \delta \mathcal{G}^V \right] = 0,$$

- Effective range expansion or modeling necessary to interpolate between discrete points to solve eigenvalue equation
- * Complicated!

Starting with a good interpolating operator for a single nucleon at x_0

Add displaced nucleon: "Face"

Add displaced nucleon: "Edge"

Add displaced nucleon: "Corner"

Different source types give us handle for isolating desired state

Large displacements necessary for maximal overlap with low-energy states

Sink: project onto noninteracting momentum shells

Sink: project onto noninteracting momentum shells

Sink: project onto noninteracting momentum shells

Sink: project onto noninteracting momentum shells

Lattice details

- HadSpec isotropic clover
- * a ~ 0.145 fm
- * $V = 24^3(32^3)x \ 48$
- * $m_{\pi} = m_K \sim 800 \text{ MeV}$

- x 8 ("corner" sources) or x 12 ("edge" sources)
- * Same configs used by NPLQCD for S-wave scattering

Spectrum

* Clean separation between energy levels

* Many signals several sigma away from non-interacting

- Neglect partial wave mixing for the moment
- * Simple Luscher relations: $q \cot \delta_{\Lambda}(q) = 4\pi \left(c_{00}(q^2) + \alpha_{4,\Lambda} \frac{c_{40}(q^2)}{q^4} + \alpha_{6,\Lambda} \frac{c_{60}(q^2)}{q^6} \right)$

kinematic factors:
$$c_{\ell m_{\ell}}(q^2) = \frac{\sqrt{4\pi}}{L^3} \left(\frac{2\pi}{L}\right)^{\ell-2} \sum_{\mathbf{r}\in Z^3} \frac{|\mathbf{r}|^{\ell} Y_{\ell m_{\ell}}(\mathbf{r})}{(r^2-q^2)}.$$

Isospin	Spin	Parity	Λ	δ_{Λ}	$\alpha_{4,\Lambda}$	$\alpha_{6,\Lambda}$
Triplet	Singlet	Positive	A_1^+	δ_{1S_0}	0	0
			T_2^+	δ_{1D_2}	-4/7	0
Singlet	Singlet	Negative	T_1^-	δ_{1P_1}	0	0
			A_2^-	δ_{1F_3}	-12/11	$80/11\sqrt{13}$
Singlet	Triplet	Positive	T_1^+	δ_{3S_1}	0	0
			A_2^+	δ_{3D_3}	-4/7	0
Triplet	Triplet	Negative	A_1^-	δ_{3P_0}	0	0
			T_1^-	δ_{3P_1}	0	0
			T_2^-	δ_{3P_2}	0	0
			E^{-}	δ_{3P_2}	2/7	0

Briceno, Davoudi, Luu, Phys.Rev. D 88 034502 (2013)

S-wave

S-wave

NPLQCD, Phys.Rev. C88 (2013) 2, 024003

Relininary

Bound States

 $pcot\delta = ip$

both NPLQCD & Yamazaki, et. al. found relatively deeply bound states

P-wave

P-wave

No evidence for breakdown of ERE above t-channel cut

Agrees qualitatively with experiment (even with 800 MeV pion!) and HalQCD

D-wave

F-wave

F-wave

Phase shift seems to be small - ok to neglect unphysical mixing in p-wave channels?

Conclusions

- Used Lüscher method to determine nucleon-nucleon scattering phase shifts in S, P, D, and F partial wave channels
- * Sophisticated sources/sinks give multiple clearly separated levels in most channels
- Find deeply bound states in ¹S₀ and ³S₁ channels, in agreement with past works using Lüscher method - possible second bound state not previously found in ³S₁ channel
- Success with ¹S₀ and ³P₀ channels allows us to explore hadronic parity violation (talk by T. Kurth)
- ³P₂ channel displays remarkable consistency for different cubic irreps and over a large range of energies
- For the moment, we neglect partial wave mixing both physical and due to the cubic volume - will include mixing in the future

both NPLQCD & Yamazaki, et. al. found deeply bound states