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We know two kinds of lattice formulations.

1. Path-integral formulation
K. Wilson, Phys. Rev. D 10, 2445 (1974).

e Both the space and time directions are discretized.
e Free from gauge fixing.

e Many successes in QCD with the HMC algorithm.

2. Hamiltonian formulation

J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).
e Only the space directions are discretized.
e Temporal gauge fixing.

e No success yet in QCD.

Both the formulations shoud give us the same continuum limit.
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The Schwinger model is a good test bed to check the consistency.

There are reliable numerical results in the KS formulation.

% Related talks in this conference
e B. Buyens, Wed 15 @ Room 406
e H. Saito, Wed 15 @ room 406

Our target is the critical point of the one-flavor Schwinger model in
the 8 vaccum.

Byrnes et al. already succeeded in estimating it with the KS formulation
employing the density matrix renormalization group.

T. Byrnes, P. Sriganesh, R. Bursill and C. Hamer, Phys. Rev. D 66, 013002 (2002).
m
(?) =0.3335(2) atf=m
C

Can we get the same value with Wilson's formulation?
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Monte Carlo simulations fail at large 8 because of the numerical sign problem.
— Tensor Renormalization Group (TRG)
M. Levin and C. P. Nave, Phys. Rev. Lett. 99 120601 (2007).

% Related presentations in this conference
e H. Kawauchi, Wed 15 @ Room 406
e Y. Meurice, Wed 15 @ room 406
e Y. Yoshimura, Poster (#42)
¢ A. Bazavoy, Sat 18 @ room 404
e extension to fermionic systems - Grassmann TRG

Z.-C. Gu, F. Verstraete and X.-G. Wen, arXiv:1004.2563 [cond-mat.str-el].

e fOor gauge theories - Decorated TRG
B. Dittrich, S. Mizera and S. Steinhaus, arXiv:1409.2407 [gr-qc].

We combine the GTRG with the DTRG, and tackle the one-flavor Schwinger
model at 6 =m.

The unimproved Wilson fermion is employed.
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We translate the partition function into a tensor network form.
7 = dep d(]JdU e-Sf[¢,l7J]-5g[U] partition function

e~ is decomposed by using properties of Grassmann numbers.

e~ is expanded by the character expansion. decorated tensor network
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Tij ks includes Grassmann numbers ¢, l,_b, dy, O'(,_U-

Each T;; «, is decorated by plaquette indices {k, lp,}.
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Singular Value Decomposition

T=UA vT

/ )

Tensor Network \

\ ”/

Contraction
Cycle

The scale factor is V2. j:[ ><

The key idea is low-rank approximation by the SVD.

Dcut
7—i,j,k,/ = Z U(i,j),m/\m Vm,(k,/) truncated by a number D!
m=1

We keep only large singular values.
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The TRG fails to integrate out some short-range correlations.

Z.-C. Gu and X.-G. Wen, Phys. Rev. B 80, 155131 (2009).

Recently, Evenbly and Vidal developed an improvement which can integrate
out all short-range correlations, but its computational cost is rather expen-

sive.
G. Evenbly and G. Vidal, arXiv:1412.0732 [cond-mat.str-el].

We can still derive some information about long-distance physics from the
coarse-grained tensor obtained by the unimproved TRG.

Gu and Wen proposed the following quantity for such purpose.

2
( |; ) # of degeneracy of the vacuum
‘E |E in the infrared limit
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After many iterations, each flow reaches the different fixed point.



Numerical results 2 9/13

B =10.0, Deye =16, Nce. = 20, Niters. = 30
2.2 x w : x

2‘)*XXXXXXXXXXXXXXXXXXXXXXXXXX

1.8}
1.6/ Z(2) broken phase Symmetric phase
1.4¢

1.2¢

1.0* KXAHKAKAKHKXXAKAKAKXXKXAKAKAKKXXAKAKX X XA

98400 02405 02470 02415 02420  0.2425
K

It clearly shows a Z(2)-breaking phase transition.



Numerical results 3

10/13

Kc

0.2416

0.2414}

0.2412}

0.2410}

0.2408}

0.2406}

0.2404

0.2402}

0.2400

B=10.0, Nco. =20

B
B
B

B

B

B

6 8 10 12 14 16 18
DCUt

Kc is well converged where D¢, >15.

20

22



Numerical results 4 11/13

B =10.0, Kk =0.24130, Dy =16
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N/ters.
Nc... = 2 seems to be sufficient to reach the correct fixed point.

The fact encourages us to go to higher 8 with rather small N..
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Continuum extrapolation:

(2) =0330(9), fitrangeisBe[50,700].

Our result is consistent with that of Byrnes et al. but less accurate.
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We have combined the GTRG with the DTRG and applied it to the one-flavor
Schwinger model in Wilson’s lattice formulation.

The critical point we estimated agrees with that of Byrnes et al., which was
derived from the KS lattice formulation.

Our estimate is less accurate because we employed the unimproved Wilson
fermion while they employed the KS fermion.

The DTRG allows us to introduce the clover-improved Wilson fermion, but
naive implementation requires much more computational resources.

We should try it in case of N, = 2 first.



