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AdS/CFT and observables

Type IIB strings in AdS5 x S° > N = 4 super Yang-Mills in 4 d
(957 R) (ng\/b N)
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AdS/CFT and observables

Type IIB strings in AdS5 x S° > N = 4 super Yang-Mills in 4 d
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@ I|dentification of parameters: — = g%M N =+vX and gs= N

e Dictionary for observables. Example:“cusp anomaly” of ' = 4 SYM.

Dimension of twist operators Agwist ~ f(A) InS,  §>1
A

Renormalization of cusped Wilson loops (Weusp) ~ e~ fN)eln <

Energy of a spinning string Minimal surface of the string

Eclassical ~ f()‘) In S




AdS/CFT perturbatively
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Weak/strong coupling duality: two regimes of controls are opposite. R— =
F(A)4

Solvable for A < 1 \(— Solvable for A > 1
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AdS/CFT at finite coupling
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[MInahan Zarembo 2002]
In the large N/planar limit, strong evidence of integrability of the spectral problem.
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Anomalous dimensions, perturbatively, are eigenvalues of integrable spin chain hamiltonians.

Assuming this at all loops: a Bethe Ansatz proposed to give the exact spectrum.

Spectacular agreement with perturbative results: [Beisert Eden Staudacher 2006]
[Bern Dixon Kosower 2006, Roiban Tseytlin 2007]

Toward exact solution of a 4-d interacting gauge theory?



String worldsheet sigma-model on the lattice

Lattice investigation of the string worldsheet sigma-model: [McKeown Roiban 13]

general, assumptions-free, readily generalizable (AdS4/CFT3 and to ).

Potentially powerful tool to test integrability (/localization) predictions and AdS/CFT.

Appealing features:

> 2d: computationally cheap
> no supersymmetry on the world-sheet (Green-Schwarz formulation)

> “strong coupling” analytically known (perturbative N' = 4 SYM theory)




The model: Green-Schwarz string in AdSsxS°
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AdSs X S5
Non-linear sigma-model: [Metsaev Tseytlin 1998]
S = ZL/_ drdo [0, X"0* X" G, + H(D + F5)0 0X + 00000, X0 X + .. ]
T

Symmetries: global PSU(2, 2|4), local bosonic (diffeomorphism) and fermionic (x-).
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To quantize it use semiclassical methods h «— 1/g, g =

E

2 loops: current limit
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[Giombi Ricci Roiban Tseytlin 2009] [Bianchi Bianchi Bres VF Vescovi 2014]



Test observable: cusp anomaly of N=4 SYM

Expectation value of a light-like cusped Wilson loop
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Zonsp = <W[Ccusp]> N e—f(9)¢1n p—

Leusp = /[DdX] (D60 o~ S1B (Xeusp+6X,60) _ —Tops

String partition function with "~ "cusp” boundary conditions

In Poincaré patch (boundary at z=0)

dz? + dxt dx~ + dx* dx
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classical solution (7 and o vary from 0 to o0) of the string equations of motion:
T n 1

z = — T = T €T e
o 20

describe a surface bounded by a null cusp, as at the AdSs boundary 0 = 22 = — 2212~ .




Test observable: cusp anomaly of N=4 SYM

Expectation value of a light-like cusped Wilson loop

<W[Ccusp]> ~ e—f(g) 0@
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Zcusp

String partition function with "~ "cusp” boundary conditions
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classical solution (7 and o vary from 0 to o0) of the string equations of motion:

z = T ot =71 r = —i
o 20
describe a surface bounded by a null cusp, as at the AdSs boundary 0 = 22 = — 2212~ .
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Test observable: cusp anomaly of N=4 SYM

Cusp anomaly formally given by a partition function flg) = ———
or via the expectation value

[[D6X][D6) S e? _

15) = [[D5X][Ds6] e=5
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This is the object of our simulation

S (action for fluctuations over the cusp) obtained gauge-fixing bosonic and fermionic
local symmetries - “AdS light-cone gauge”. The gauge-fixing leaves just one symmetry, SO(6).
It is “just” quartic in the fermions.

—> Introducing auxiliary (complex bosons) fields allows linearization,
and Grassmann fields can be formally integrated out. M: fermionic operator

det M = (det MTM)Y/? = /D(Dfe_dedaf(MTM)_l/QC

l

no ambiguities here



The simulation: final lagrangean

The lagrangian to be discretized is
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where (pM)Z-j are off-diagonal blocks of SO(6) Dirac matrices 7 = ( M M)




The simulation: final lagrangean

The lagrangian to be discretized is

m
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where (pM)z'j are off-diagonal blocks of SO(6) Dirac matrices M = (

> A naive regularization leads to doublers
» “Wilson fermion” procedure.

> Light-cone momentum is typically set to 1

» Here: reintroduce m ~ P,




The simulation: parameter space

VA
@ In the continuum model there are two parameters, g = e and m ~ P, .

In perturbation theory divergences cancel and dimensionless quantities are pure
functions of the (bare) coupling

F=F(g) -

® OQur discretization cancels (1-loop) divergences.
Assume it is true nonperturbatively for lattice regularization, with

lattice spacing a and box size L? = (N a)*=V.

There are in total three dimensionless parameters
g, = — M=am

Therefore
Frar = Fuar(g, N, M)



The simulation: continuum limit

Remove the cutoff and compare to other results (here: integrability) or other regularizations.

If there are no divergences (i.e. no terms proportional to 1/a)

1 _
Fuar(g, N, M) = F(g) + O ) + O(M) + O(e MN\>4
finite lattice spacing finite volume
(~a) effects (~ m L) effects
Recipe:
> fix g

> fix M N = mL, large enough so that finite volume effects are small
> compute Frat for N =6,8,10,12, 16, ...

> extrapolate to 1/N — 0



The simulation: the observable

The relation between partition function and cusp anomaly f(9) is
7 = / [DgleS19 = eV 110) - / [DY][Dpans] e~ 10211 (g)

The action simulated on the lattice is the modified one S’ (auxiliary fields and jacobian)

[D¢D¢auy S" J(9) e dInJ(g dln Z
—(Q —
[ DéDepaux J(g) e~ dg 7~ 7 g

and its relation to f(g) - which goes via In Z - picks a constant factor (from now on S’ — S)

(8) = SN+ Lm*V g ['(g)
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and its relation to f(g) - which goes via In Z - picks a constant factor (from now on S’ — S)
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(S) = =N+ —m*V g f'(9) Recall: m2:% 'V =a’®N?
2 8 a2
(S) c 1. 5 3In21
1. Fit N2 5 + 5 g tofind ¢, having in mind f(g)‘g—> g ir g
B 2
2. Compute the continuum limit of <§> CN. — 1f’(g)
§M2N29 4

For both we have predictions.



Status of the simulation - |

Sy e 1, _ _
Fit ~NZ 9 + §M g for fixed/different values of M (red: M=0.5, black: M=0.1)

Find ¢ = 15 (extrapolatingto g — 0), as expected.
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Status of the simulation - Il

Continuum limit (increasing N) at g=100 and g=30

(<S> —T.5N2)/S,

Since f(9)g—o0 =49 [1 —~
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Status of the simulation - lli

Continuum limit at g=5.
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Compatible with the “weak coupling” analysis.



Status of the simulation - IV
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Plot of our observable in thexcontinuum limit as a function of g
Errors are just statistical, and compared with the computational effort (minimal) very good.

at g=1 continuum limit is problematic



Conclusions

@ Preliminary results on Green-Schwarz string worldsheet model on the lattice:

> good control on the “weak coupling” region, continuum limit problematic in lowering g.
> good (Fortran, Matlab) implementations (standard RHMC), internal consistency checks.

Possible change of discretization needed.

Important to have further observables for a non-trivial check of the code,
and of the continuum limit! For example correlation functions of the fields.

® Future prospects:

> cusp anomaly of AdS4/CF T3
> correlators of string vertex operators (three-point functions in gauge theory)

Solving a 4d gft is hard ——> Reduce the problem via AdS/CFT,
and “solve a (non-trivial) 2d gft”: Green-Schwarz string in AdSsxS°.

An efficient analysis in this context might become
crucial device in numerical holography!




Extra slides



Roiban McKeown 2013
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