Lattice and string worldsheet in AdS/CFT: a numerical study

Valentina Forini
Humboldt University Berlin
Independent Emmy Noether Research Group

Work in progress with L. Bianchi, M. S. Bianchi, M. Bruno, B. Leder, E. Vescovi

LATTICE 2015, Kobe, July 182015

AdS/CFT and observables

Type IIB strings in $A d S_{5} \times S^{5} \quad \longleftrightarrow \quad \mathcal{N}=4$ super Yang-Mills in 4 d
$\left(g_{S}, R\right)$

- Identification of parameters $\frac{R^{2}}{\alpha^{\prime}} \equiv \sqrt{g_{\mathrm{YM}}^{2} N}=\sqrt{\lambda}$ and $g_{S}=\frac{4 \pi \lambda}{N}$

AdS/CFT and observables

Type IIB strings in $A d S_{5} \times S^{5} \quad \longleftrightarrow \quad \mathcal{N}=4$ super Yang-Mills in 4 d $\left(g_{S}, R\right)$

- Identification of parameters: $\frac{R^{2}}{\alpha^{\prime}} \equiv \sqrt{g_{\mathrm{YM}}^{2} N}=\sqrt{\lambda}$ and $g_{S}=\frac{4 \pi \lambda}{N}$
- Dictionary for observables. Example:"cusp anomaly" of $\mathcal{N}=4$ SYM.

Dimension of twist operators
Renormalization of cusped Wilson loops

Energy of a spinning string

$E_{\text {classical }} \sim f(\lambda) \ln S$

$$
\Delta_{\text {twist }} \sim f(\lambda) \ln S, \quad S \gg 1
$$

$$
\left\langle W_{\text {cusp }}\right\rangle \sim e^{-f(\lambda) \phi \ln \frac{\Lambda}{\epsilon}}
$$

Minimal surface of the string

$$
Z_{\text {str }}=\int D[\phi] e^{-S_{\operatorname{str}}[\phi]}=e^{-f(\lambda) V}
$$

AdS/CFT perturbatively

Weak/strong coupling duality: two regimes of controls are opposite. $\frac{R^{2}}{\alpha^{\prime}} \equiv \sqrt{g_{\mathrm{YM}}^{2} N}=\sqrt{\lambda}$

Solvable for $\lambda \ll 1$
$f(\lambda)=\lambda a_{0}+\lambda^{2} a_{1}+\cdots$

Solvable for $\lambda \gg 1$

$$
f(\lambda)=\sqrt{\lambda} b_{0}+b_{1}+\frac{1}{\sqrt{\lambda}} b_{2}+\cdots
$$

AdS/CFT at finite coupling

Weak/strong coupling duality: two regimes of controls are opposite. $\frac{R^{2}}{\alpha^{\prime}} \equiv \sqrt{g_{\mathrm{YM}}^{2} N}=\sqrt{\lambda}$ Solvable for $\lambda \ll 1$
$f(\lambda)=\lambda a_{0}+\lambda^{2} a_{1}+\cdots$

Solvable for $\lambda \gg 1$
$f(\lambda)=\sqrt{\lambda} b_{0}+b_{1}+\frac{1}{\sqrt{\lambda}} b_{2}+\cdots$
[MInahan Zarembo 2002]
In the large N/planar limit, strong evidence of integrability of the spectral problem.

$$
\mathcal{O}=\operatorname{Tr}\left(\phi_{1} \phi_{1} \phi_{2} \phi_{1} \phi_{2} \ldots\right) \equiv|\downarrow \downarrow \downarrow \uparrow . .\rangle \equiv \begin{array}{ccc}
\\
\text { a }
\end{array}
$$

Anomalous dimensions, perturbatively, are eigenvalues of integrable spin chain hamiltonians.

Assuming this at all loops: a Bethe Ansatz proposed to give the exact spectrum. Spectacular agreement with perturbative results:
[Beisert Eden Staudacher 2006]
[Bern Dixon Kosower 2006, Roiban Tseytlin 2007]

Toward exact solution of a 4-d interacting gauge theory?

String worldsheet sigma-model on the lattice

Lattice investigation of the string worldsheet sigma-model:
general, assumptions-free, readily generalizable ($\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$ and to).
Potentially powerful tool to test integrability (/localization) predictions and AdS/CFT.

Appealing features:
> 2d: computationally cheap
> no supersymmetry on the world-sheet (Green-Schwarz formulation)
> "strong coupling" analytically known (perturbative $\mathcal{N}=4$ SYM theory)

The model: Green-Schwarz string in $\mathrm{AdS}_{5} \times \mathrm{SS}^{5}$

Non-linear sigma-model:
[Metsaev Tseytlin 1998]

$$
S=\frac{\sqrt{\lambda}}{4 \pi} \int d \tau d \sigma\left[\partial_{a} X^{\mu} \partial^{a} X^{\nu} G_{\mu \nu}+\bar{\theta}\left(D+F_{5}\right) \theta \partial X+\bar{\theta} \theta \bar{\theta} \theta \partial_{a} X \partial^{a} X+\ldots\right]
$$

Symmetries: global $\operatorname{PSU}(2,2 \mid 4)$, local bosonic (diffeomorphism) and fermionic (κ-).

To quantize it use semiclassical methods $\hbar \leftrightarrow 1 / g, \quad g=\frac{\sqrt{\lambda}}{4 \pi}=\frac{R^{2}}{4 \pi \alpha^{\prime}}$
$X=X_{\mathrm{cl}}+\tilde{X} \longrightarrow E=g\left[E_{0}+\frac{E_{1}}{g}+\left(\frac{E_{2}}{g^{2}}\right)+\cdots\right]$
2 loops: current limit

Test observable: cusp anomaly of N=4 SYM

Expectation value of a light-like cusped Wilson loop

$$
\begin{aligned}
& Z_{\text {cusp }}=\left\langle W\left[C_{\text {cusp }}\right]\right\rangle \sim e^{-f(g) \phi \ln \frac{L_{\mathrm{IR}}}{\epsilon_{\mathrm{UV}}}} \\
& Z_{\text {cusp }}=\int[D \delta X][D \delta \theta] e^{-S_{\mathrm{IIB}}\left(X_{\text {cusp }}+\delta X, \delta \theta\right)}=e^{-\Gamma_{\text {eff }}}
\end{aligned}
$$

String partition function with "cusp" boundary conditions

In Poincaré patch (boundary at $\mathrm{z}=0$)

$$
d s_{A d S_{5}}^{2}=\frac{d z^{2}+d x^{+} d x^{-}+d x^{*} d x}{z^{2}} \quad x^{ \pm}=x^{3} \pm x^{0} \quad x=x^{1} \pm i x^{2}
$$

classical solution (τ and σ vary from 0 to ∞) of the string equations of motion:

$$
z=\sqrt{\frac{\tau}{\sigma}} \quad x^{+}=\tau \quad x^{-}=-\frac{1}{2 \sigma}
$$

describe a surface bounded by a null cusp, as at the AdS_{5} boundary $0=z^{2}=-2 x^{+} x^{-}$.

Test observable: cusp anomaly of N=4 SYM

Expectation value of a light-like cusped Wilson loop

$$
\begin{aligned}
& Z_{\text {cusp }}=\left\langle W\left[C_{\text {cusp }}\right]\right\rangle \sim e^{-f(g) \phi \underbrace{\epsilon_{\mathrm{CV}}}_{\text {min }}} \\
& Z_{\text {cusp }}=\int[D \delta X][D \delta \theta] e^{-S_{\mathrm{IBB}}\left(X_{\text {cusp }}+\delta X, \delta \theta\right)}=e^{-\Gamma_{\text {eff }}}=e^{-f(g)(D}
\end{aligned}
$$

String partition function with "cusp" boundary conditions

In Poincaré patch (boundary at $\mathrm{z}=0$)

$$
d s_{A d S_{5}}^{2}=\frac{d z^{2}+d x^{+} d x^{-}+d x^{*} d x}{z^{2}} \quad x^{ \pm}=x^{3} \pm x^{0} \quad x=x^{1} \pm i x^{2}
$$

classical solution (τ and σ vary from 0 to ∞) of the string equations of motion:

$$
z=\sqrt{\frac{\tau}{\sigma}} \quad x^{+}=\tau \quad x^{-}=-\frac{1}{2 \sigma}
$$

describe a surface bounded by a null cusp, as at the AdS $_{5}$ boundary $0=z^{2}=-2 x^{+} x^{-}$.

$$
\begin{aligned}
\Gamma_{\text {eff }} & =\Gamma^{(0)}+\Gamma^{(1)}+\Gamma^{(2)}+\ldots \\
& =V g\left(a_{0}+\frac{a_{1}}{g}+\frac{a_{2}}{g^{2}}+\ldots\right) \equiv V f(g) \quad V=\int_{0}^{\infty} d t \int_{0}^{\infty} d s
\end{aligned}
$$

Test observable: cusp anomaly of N=4 SYM

Cusp anomaly formally given by a partition function $\quad f(g)=-\frac{\ln Z}{V}$ or via the expectation value

This is the object of our simulation

S (action for fluctuations over the cusp) obtained gauge-fixing bosonic and fermionic local symmetries - "AdS light-cone gauge". The gauge-fixing leaves just one symmetry, SO(6). It is "just" quartic in the fermions.
\longrightarrow Introducing auxiliary (complex bosons) fields allows linearization, and Grassmann fields can be formally integrated out. M : fermionic operator

$$
\operatorname{det} M=\left(\operatorname{det} M^{\dagger} M\right)^{1 / 2}=\int D \zeta D \bar{\zeta} e^{-\int d \tau d \sigma \bar{\zeta}\left(M^{\dagger} M\right)^{-1 / 2} \zeta}
$$

no ambiguities here

The simulation: final lagrangean

The lagrangian to be discretized is

$$
\begin{aligned}
& \mathcal{L}=\left|\partial_{t} \tilde{x}+\frac{1}{2} \tilde{x}\right|^{2}+\frac{1}{\tilde{z}^{4}}\left|\partial_{s} \tilde{x}-\frac{1}{2} \tilde{x}\right|^{2}+\left(\partial_{t} \tilde{z}^{M}+\frac{1}{2} \tilde{z}^{M}\right)^{2}+\frac{1}{\tilde{z}^{4}}\left(\partial_{s} \tilde{z}^{M}-\frac{1}{2} \tilde{z}^{M}\right)^{2} \\
& +\frac{1}{2} \tilde{\phi}^{2}+\frac{1}{2}\left(\tilde{\phi}_{M}\right)^{2}+\psi^{T} M \psi \\
& \text { with } \psi \equiv\left(\tilde{\theta}^{i}, \tilde{\theta}_{i}, \tilde{\eta}^{i}, \tilde{\eta}_{i}\right) i=1, \cdots, 4 \quad \text { and } \\
& M=\left(\begin{array}{cccc}
0 & i \partial_{t} & -\mathrm{i} \rho^{M}\left(\partial_{s}+\frac{1}{2}\right) \frac{\tilde{z}^{M}}{\tilde{z}^{3}} & 0 \\
\mathrm{i} \partial_{t} & 0 & 0 & -\mathrm{i} \rho_{M}^{\dagger}\left(\partial_{s}+\frac{1}{2}\right) \frac{\tilde{z}^{M}}{\tilde{z}^{3}} \\
\mathrm{i} \frac{\tilde{z}^{M}}{\tilde{z}^{3}} \rho^{M}\left(\partial_{s}-\frac{1}{2}\right) & 0 & 2 \frac{\tilde{z}^{M}}{\tilde{z}^{4}} \rho^{M}\left(\partial_{s} \tilde{x}-\frac{\tilde{x}}{2}\right) & i \partial_{t}-A^{\dagger} \\
0 & \mathrm{i} \frac{\tilde{z}^{M}}{\tilde{z}^{3}} \rho_{M}^{\dagger}\left(\partial_{s}-\frac{1}{2}\right) & \mathrm{i} \partial_{t}+A & -2 \frac{\tilde{z}^{M}}{\tilde{z}^{4}} \rho_{M}^{\dagger}\left(\partial_{s} \tilde{x}^{*}-\frac{\tilde{x}^{*}}{2}\right)
\end{array}\right) \\
& A^{i}{ }_{j}=\frac{1}{\sqrt{2} \tilde{z}^{2}} \tilde{\phi}_{M} \rho^{M N i}{ }_{j} \tilde{z}_{N}-\frac{1}{\sqrt{2} \tilde{z}} \tilde{\phi} \delta^{i}{ }_{j}+\mathrm{i} \frac{\tilde{z}_{N}}{\tilde{z}^{2}} \rho^{M N i}{ }_{j} \partial_{t} \tilde{z}^{M} \\
& \text { where }\left(\rho^{M}\right)_{i j} \text { are off-diagonal blocks of } \operatorname{SO}(6) \text { Dirac matrices } \quad \gamma^{M} \equiv\left(\begin{array}{cc}
0 & \rho_{M}^{\dagger} \\
\rho^{M} & 0
\end{array}\right)
\end{aligned}
$$

The simulation: final lagrangean

The lagrangian to be discretized is

$$
\begin{aligned}
\mathcal{L} & =\left|\partial_{t} \tilde{x}+\frac{1}{2} \tilde{x}\right|^{2}+\frac{1}{\tilde{z}^{4}}\left|\partial_{s} \tilde{x}-\frac{1}{2} \tilde{x}\right|^{2}+\left(\partial_{t} \tilde{z}^{M}+\frac{1}{2} \tilde{z}^{M}\right)^{2}+\frac{1}{\tilde{z}^{4}}\left(\partial_{s} \tilde{z}^{M}-\frac{1}{2} \tilde{z}^{M}\right)^{2} \\
& +\frac{1}{2} \tilde{\phi}^{2}+\frac{1}{2}\left(\tilde{\phi}_{M}\right)^{2}+\psi^{T} M \psi
\end{aligned}
$$

$$
\text { with } \quad \psi \equiv\left(\tilde{\theta}^{i}, \tilde{\theta}_{i}, \tilde{\eta}^{i}, \tilde{\eta}_{i}\right) \quad \text { and }
$$

$$
\begin{aligned}
& M=\left(\begin{array}{cccc}
0 & i \partial_{t} & -\mathrm{i} \rho^{M}\left(\partial_{s}+\frac{1}{2}\right) & \tilde{z}^{M} \\
\tilde{z}^{3} & 0 \\
\mathrm{i} \partial_{t} & 0 & 0 & -\mathrm{i} \rho_{M}^{\dagger}\left(\partial_{s}+\frac{1}{2}\right) \frac{\tilde{z}^{M}}{\tilde{z}^{3}} \\
\mathrm{i} \frac{\tilde{z}^{M}}{\tilde{z}^{3}} \rho^{M}\left(\partial_{s}-\frac{1}{2}\right) & 0 & 2 \tilde{z}^{M} \tilde{z}^{4} \rho^{M}\left(\partial_{s} \tilde{x}-\frac{\tilde{z}}{2}\right) & i \partial_{t}-A^{\dagger} \\
0 & \mathrm{i} \frac{\tilde{z}^{M}}{\tilde{z}^{3}} \rho_{M}^{\dagger}\left(\partial_{s}-\frac{1}{2}\right) & \mathrm{i} \partial_{t}+A & -2 \frac{\tilde{z}^{M}}{\tilde{z}^{4}} \rho_{M}^{\dagger}\left(\partial_{s} \tilde{x}^{*}-\frac{\tilde{z}^{*}}{2}\right)
\end{array}\right) \\
& A^{i}{ }_{j}=\frac{1}{\sqrt{2} \tilde{z}^{2}} \tilde{\phi}_{M} \rho^{M N i}{ }_{j} \tilde{z}_{N}-\frac{1}{\sqrt{2} \tilde{z}} \tilde{\phi} \delta^{i}{ }_{j}+\mathrm{i} \frac{\tilde{z}_{N}}{\tilde{z}^{2}} \rho^{M N i}{ }_{j} \partial_{t} \tilde{z}^{M}
\end{aligned}
$$

where $\left(\rho^{M}\right)_{i j}$ are off-diagonal blocks of $\operatorname{SO}(6)$ Dirac matrices $\quad \gamma^{M} \equiv\left(\begin{array}{cc}0 & \rho_{M}^{\dagger} \\ \rho^{M} & 0\end{array}\right)$
> A naive regularization leads to doublers
\longrightarrow "Wilson fermion" procedure.
> Light-cone momentum is typically set to 1

The simulation: parameter space

- In the continuum model there are two parameters, $g=\frac{\sqrt{\lambda}}{4 \pi}$ and $m \sim P_{+}$. In perturbation theory divergences cancel and dimensionless quantities are pure functions of the (bare) coupling

$$
F=F(g) .
$$

- Our discretization cancels (1-loop) divergences.

Assume it is true nonperturbatively for lattice regularization, with lattice spacing a and box size $L^{2}=(N a)^{2}=V$.

There are in total three dimensionless parameters

$$
g, \quad N \equiv \frac{L}{a}, \quad M \equiv a m
$$

Therefore

$$
F_{\mathrm{LAT}}=F_{\mathrm{LAT}}(g, N, M)
$$

The simulation: continuum limit

Remove the cutoff and compare to other results (here: integrability) or other regularizations.
If there are no divergences (i.e. no terms proportional to $1 / a$)

Recipe:
$>$ fix g
> fix $M N=m L$, large enough so that finite volume effects are small
> compute $F_{\text {LAT }}$ for $N=6,8,10,12,16, \ldots$
> extrapolate to $1 / N \rightarrow 0$

The simulation: the observable

The relation between partition function and cusp anomaly $f(g)$ is

$$
Z=\int[D \phi] e^{-S[\phi]} \equiv e^{-\widetilde{V} f(g)}=\int[D \phi]\left[D \phi_{\text {aux }}\right] e^{-S^{\prime}\left[\phi, \phi_{\mathrm{aux}}\right]} J(g)
$$

The action simulated on the lattice is the modified one S^{\prime} (auxiliary fields and jacobian)

$$
\left\langle S^{\prime}\right\rangle=\frac{\int D \phi D \phi_{\mathrm{aux}} S^{\prime} J(g) e^{-S^{\prime}}}{\int D \phi D \phi_{\mathrm{aux}} J(g) e^{-S^{\prime}}}=g \frac{d \ln J(g)}{d g}-g \frac{d \ln Z}{d g}
$$

and its relation to $f(g)$ - which goes via $\ln Z$ - picks a constant factor (from now on $S^{\prime} \rightarrow S$)

$$
\langle S\rangle=\frac{15}{2} N^{2}+\frac{1}{8} m^{2} V g f^{\prime}(g)
$$

The simulation: the observable

The relation between partition function and cusp anomaly $f(g)$ is

$$
Z=\int[D \phi] e^{-S[\phi]} \equiv e^{-\widetilde{V} f(g)}=\int[D \phi]\left[D \phi_{\mathrm{aux}}\right] e^{-S^{\prime}\left[\phi, \phi_{\mathrm{aux}}\right]} J(g)
$$

The action simulated on the lattice is the modified one S^{\prime} (auxiliary fields and jacobian)

$$
\left\langle S^{\prime}\right\rangle=\frac{\int D \phi D \phi_{\mathrm{aux}} S^{\prime} J(g) e^{-S^{\prime}}}{\int D \phi D \phi_{\mathrm{aux}} J(g) e^{-S^{\prime}}}=g \frac{d \ln J(g)}{d g}-g \frac{d \ln Z}{d g}
$$

and its relation to $f(g)$ - which goes via $\ln Z$ - picks a constant factor (from now on $S^{\prime} \rightarrow S$)

$$
\langle S\rangle=\frac{15}{2} N^{2}+\frac{1}{8} m^{2} V g f^{\prime}(g) \quad \text { Recall: } m^{2}=\frac{M^{2}}{a^{2}}, V=a^{2} N^{2}
$$

1. Fit $\frac{\langle S\rangle}{N^{2}}=\frac{c}{2}+\frac{1}{2} M^{2} g$ to find c, having in mind $\left.f(g)\right|_{g \rightarrow \infty}=4 g\left[1-\frac{3 \ln 2}{4 \pi} \frac{1}{g}+\ldots\right]$
2. Compute the continuum limit of $\frac{\langle S\rangle-c N^{2}}{\frac{1}{2} M^{2} N^{2} \dot{g}}=\frac{1}{4} f^{\prime}(g)$

For both we have predictions.

Status of the simulation - I

Fit $\frac{\langle S\rangle}{N^{2}}=\frac{c}{2}+\frac{1}{2} M^{2} g$ for fixed/different values of M (red: $\mathrm{M}=0.5$, black: $\mathrm{M}=0.1$)
Find $c=15$ (extrapolating to $g \rightarrow 0$), as expected.

Status of the simulation - II

Continuum limit (increasing N) at $\mathrm{g}=100$ and $\mathrm{g}=30$

Since $\left.f(g)\right|_{g \rightarrow \infty}=4 g\left[1-\frac{3 \ln 2}{4 \pi} \frac{1}{g}+\ldots\right]$ this is good.

Status of the simulation - III

Continuum limit at $\mathrm{g}=5$.

Compatible with the "weak coupling" analysis.

Status of the simulation - IV

Plot of our observable in the continuum limit as a function of g
Errors are just statistical, and compared with the computational effort (minimal) very good.
at $\mathrm{g}=1$ continuum limit is problematic

Conclusions

- Preliminary results on Green-Schwarz string worldsheet model on the lattice:
$>$ good control on the "weak coupling" region, continuum limit problematic in lowering g.
> good (Fortran, Matlab) implementations (standard RHMC), internal consistency checks.
Possible change of discretization needed.
Important to have further observables for a non-trivial check of the code, and of the continuum limit! For example correlation functions of the fields.
- Future prospects:
> cusp anomaly of $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$
$>$ correlators of string vertex operators (three-point functions in gauge theory)

Solving a 4d qft is hard \longrightarrow Reduce the problem via AdS/CFT, and "solve a (non-trivial) 2d qft": Green-Schwarz string in AdS $5_{5} \mathrm{SS}^{5}$.

An efficient analysis in this context might become crucial device in numerical holography!

Extra slides

Roiban McKeown 2013

