Tensor renormalization group analysis of $\mathrm{CP}(\mathrm{N}-1)$ model in two dimensions

Hikaru Kawauchi
Kanazawa University
LATTICE2015
Collaborator: Shinji Takeda

Outline

- Introduction
- Tensor Renormalization Group (TRG)
- Higher Order TRG
- $\mathrm{CP}(\mathrm{N}-1)$ model
- Summary

Introduction

- Lattice QCD calculations use Monte Carlo methods.
- But, we need new methods for the systems suffering from sign problem.
- Tensor renormalization group (TRG) method has no sign problem.

Strong CP problem

- The QCD Lagrangian naturally includes the θ term.
- Why is the term so small ?

But

. The 4D QCD is still difficult for TRG.

- $\mathrm{CP}(\mathrm{N}-1)$ model in two dimensions

Tensor Renormalization Group (TRG)

Michael Levin and Cody P. Nave, Phys. Rev. Lett. 99, 120601 (2007).

1. Tensor network representation

$$
Z=\operatorname{Tr} e^{-\beta H} \quad Z=\operatorname{Tr}_{\|=, y)} \prod_{i} T_{x_{i} x_{i}^{\prime} y_{i} y_{i}^{\prime} \cdots}
$$

2. Reduce the number of tensors

$$
Z=\operatorname{Tr}[T T \cdots T] \rightarrow \cdots \xrightarrow{\text { coarse } \underline{~ g r a n i n i n g ~}} \cdots \rightarrow Z \simeq \operatorname{Tr}\left[T^{(n)}\right]
$$

Higher-Order TRG

. TRG method based on the HOSVD

- HOTRG is more accurate than TRG.
- HOTRG can be extended to higher dimensions.

Z. Y. Xie, J. Chen, M. P. Qin, J. W. Zhu, L. P. Yang, and T. Xiang,

PHYSICAL REVIEW B 86, 045139 (2012).

Higher-Order TRG

Procedure
Z. Y. Xie, J. Chen, M. P. Qin, J. W. Zhu, L. P. Yang, and T. Xiang, PHYSICAL REVIEW B 86, 045139 (2012).
i) Combine two T tensors into one M tensor

Higher-Order TRG

Procedure
Z. Y. Xie, J. Chen, M. P. Qin, J. W. Zhu, L. P. Yang, and T. Xiang, PHYSICAL REVIEW B 86, 045139 (2012).
i) Combine two T tensors into one M tensor
ii) Insert a product of orthogonal matrices $\sum_{m}^{D_{\text {cut }}} U_{i m} U_{j m}$ into the two M tensors

Higher-Order TRG

$\begin{array}{ll}\text { Procedure } & \text { Z. Y. Xie, J. Chen, M. P. Qin, J. W. Zhu, L. P. Yang, and T. Xiang, } \\ \text { PHYSICAL REVIEW B 86, } 045139 \text { (2012). }\end{array}$
i) Combine two T tensors into one M tensor
ii) Insert a product of orthogonal matrices $\sum_{m}^{D_{\text {cut }}} U_{i m} U_{j m}$ into the two M tensors

Higher-Order TRG

Procedure Z. Y. Xie, J. Chen, M. P. Qin, J. W. Zhu, L. P. Yang, and T. Xiang, PHYSICAL REVIEW B 86, 045139 (2012).
i) Combine two T tensors into one M tensor
ii) Insert a product of orthogonal matrices $\sum_{m}^{D_{\text {cut }}} U_{i m} U_{j m}$ into the two M tensors

$\mathrm{CP}(\mathrm{N}-1)$ model in two dimensions

Tensor Network Representation

$$
\begin{array}{rlrl}
Z & =\int D z D z^{*} D U \mathrm{e}^{-(S-i \theta Q)} & \begin{array}{l}
z^{a}(x)^{*} z^{a}(x)=1, a=1, \cdots, N \\
U_{i j}(x)=\exp \left\{i a A_{i j}(x)\right\}
\end{array} \\
& =\int \prod_{i} d z_{i} d z_{i}^{*} \prod_{<i, j>} d U_{i, j} \mathrm{e}^{\beta N \sum_{i, j}\left[z_{i}^{*} \cdot z_{j} U_{i, j}+z_{j}^{*} \cdot z_{i} U_{i, j}^{\dagger}\right]+i \frac{\theta}{2 \pi} \sum_{p} q_{p}} .
\end{array}
$$

$\mathrm{CP}(\mathrm{N}-1)$ model in two dimensions

Tensor Network Representation

$$
\begin{aligned}
Z & =\int D z D z^{*} D U \mathrm{e}^{-(S-i \theta Q)} \quad \begin{array}{l}
z^{a}(x)^{*} z^{a}(x)=1, a=1, \cdots, N \\
U_{i j}(x)=\exp \left\{i a A_{i j}(x)\right\}
\end{array} \\
& =\int \prod_{i} d z_{i} d z_{i}^{*} \prod_{<i, j>} d U_{i, j} \frac{\mathrm{e}^{\beta N \sum_{i, j}\left[z_{i}^{*} \cdot z_{j} U_{i, j}+z_{j}^{*} \cdot z_{i} U_{i, j}^{\dagger}\right]+i \frac{\theta}{2 \pi} \sum_{p} q_{p}} .}{}
\end{aligned}
$$

Expand the weight with new integers $(s, t, u, v, \cdots \in \mathbb{Z})$

$\mathrm{CP}(\mathrm{N}-1)$ model in two dimensions

Tensor Network Representation
$Z=\int D z D z^{*} D U \mathrm{e}^{-(S-i \theta Q)}$

$$
\begin{aligned}
& z^{a}(x)^{*} z^{a}(x)=1, a=1, \cdots, N \\
& U_{i j}(x)=\exp \left\{i a A_{i j}(x)\right\}
\end{aligned}
$$

$$
=\frac{\int \prod_{i} d z_{i} d z_{i}^{*} \prod_{<i, j>} d U_{i, j}}{\mathrm{e}^{\beta N \sum_{i, j}\left[z_{i}^{*} \cdot z_{j} U_{i, j}+z_{j}^{*} \cdot z_{i} U_{i, j}^{\dagger}\right]+i \frac{\theta}{2 \pi} \sum_{p} q_{p}}}
$$

Expand the weight with new integers $(s, t, u, v, \cdots \in \mathbb{Z})$ \downarrow
Integrate out old d.o.f
$\begin{array}{cc}\downarrow \\ \text { Tensor } & \\ T_{s, t, u, v, \cdots}\end{array}$

$\mathrm{CP}(\mathrm{N}-1)$ model in two dimensions

We use characterlike expansion.
J. C. Plefka and S. Samuel, Phys. Rev. D 55, 3966 (1997).

$$
\theta=0
$$

$$
\begin{aligned}
& \exp \left\{\beta N\left[z_{i}^{*} \cdot z_{j} \exp \left(i A_{i, j}\right)+z_{i} \cdot z_{j}^{*} \exp \left(-i A_{i, j}\right)\right]\right\} \\
& =Z_{0}(\beta) \sum_{l, m} d_{(l ; m)} \exp \left[i(m-l) A_{i, j}\right] h_{(l ; m)}(\beta) f_{(l ; m)}\left(z_{i}, z_{j}\right)
\end{aligned}
$$

$Z_{0}(\beta) \quad$: normalization factor
$d_{(l ; m)} \quad$: dimensionalities of characterlike representations
$h_{(l ; m)}(\beta)$: characterlike expansion coefficients
$f_{(l ; m)}\left(z_{i}, z_{j}\right)$: characterlike expansion characters

$\mathrm{CP}(\mathrm{N}-1)$ model in two dimensions

We use characterlike expansion.
J. C. Plefka and S. Samuel, Phys. Rev. D 55, 3966 (1997).

$$
\begin{aligned}
& \exp \left\{\beta N\left[z_{i}^{*} \cdot z_{j} \exp \left(i A_{i, j}\right)+z_{i} \cdot z_{j}^{*} \exp \left(-i A_{i, j}\right)\right]\right\} \\
& =Z_{0}(\beta) \sum_{l, m} d_{(l ; m)} \exp \left[i(m-l) A_{i, j}\right] \frac{h_{(l ; m)}(\beta) f_{(l ; m)}\left(z_{i}, z_{j}\right)}{} \\
& =\frac{I_{N-1+l+m}(2 N \beta)}{I_{N-1}(2 N \beta)} \text { truncation! }
\end{aligned}
$$

$\mathrm{CP}(\mathrm{N}-1)$ model in two dimensions

We use characterlike expansion.
J. C. Plefka and S. Samuel, Phys. Rev. D 55, 3966 (1997).

$$
\theta=0
$$

$$
\begin{aligned}
& \exp \left\{\beta N\left[z_{i}^{*} \cdot z_{j} \exp \left(i A_{i, j}\right)+z_{i} \cdot z_{j}^{*} \exp \left(-i A_{i, j}\right)\right]\right\} \\
& =Z_{0}(\beta) \sum_{l, m} d_{(l ; m)} \exp \left[i(m-l) A_{i, j}\right] h_{(l ; m)}(\beta) \frac{f_{(l ; m)}\left(z_{i}, z_{j}\right) .}{} \\
& \text { e.g. } \\
& f_{(0 ; 0)}\left(z_{i}, z_{j}\right)=1,
\end{aligned}
$$

$$
f_{(1 ; 0)}\left(z_{i}, z_{j}\right)=\sqrt{N}\left(z_{i} \cdot z_{j}^{*}\right),
$$

$$
f_{(1 ; 1)}\left(z_{i}, z_{j}\right)=N \sqrt{\frac{N+1}{N-1}}\left[\left(z_{i} \cdot z_{j}^{*}\right)\left(z_{i}^{*} \cdot z_{j}\right)-\frac{1}{N}\right],
$$

$\mathrm{CP}(\mathrm{N}-1)$ model in two dimensions

We use characterlike expansion.
J. C. Plefka and S. Samuel, Phys. Rev. D 55, 3966 (1997).

$$
\theta=0
$$

$$
\begin{aligned}
& \exp \left\{\beta N\left[z_{i}^{*} \cdot z_{j} \exp \left(i A_{i, j}\right)+z_{i} \cdot z_{j}^{*} \exp \left(-i A_{i, j}\right)\right]\right\} \\
& =Z_{0}(\beta) \sum_{l, m} d_{(l ; m)} \exp \left[i(m-l) A_{i, j}\right] h_{(l ; m)}(\beta) \underset{(l ; m)}{f_{(l, m)}\left(z_{i}, z_{j}\right)} . \\
& f_{(l ; m)}\left(z_{i}, z_{j}\right) \\
& =\sum_{\{a\}} F_{(l ; m)}^{a_{1}, \cdots, a_{l+m}}\left(z_{i}\right) \tilde{F}_{(l ; m)}^{a_{1}, \cdots, a_{l+m}}\left(z_{j}\right)
\end{aligned}
$$

$\mathrm{CP}(\mathrm{N}-1)$ model in two dimensions

Integrate out z

$$
\theta=0
$$

$$
\begin{aligned}
& T_{\left(\left(l_{s} ; m_{s}\right),\{a\}\right)\left(\left(l_{t} ; m_{t}\right),\{b\}\right)\left(\left(l_{u} ; m_{u}\right),\{c\}\right)\left(\left(l_{v} ; m_{v}\right),\{d\}\right)} \\
&= \int d z_{i} d z_{i}^{*} \\
& \sqrt{d_{\left(l_{s} ; m_{s}\right)} d_{\left(l_{t} ; m_{t}\right)} d_{\left(l_{u} ; m_{u}\right)} d_{\left(l_{v} ; m_{v}\right)} h_{\left(l_{s} ; m_{s}\right)}(\beta) h_{\left(l_{t} ; m_{t}\right)}(\beta) h_{\left(l_{u} ; m_{u}\right)}(\beta) h_{\left(l_{v} ; m_{v}\right)}(\beta)} \\
& \tilde{F}_{\left(l_{s} ; m_{s}\right)}^{\left.a_{1}, \cdots, a_{s}\right)}\left(a_{s}+m_{s}\right. \\
&\left(z_{i}\right) F_{\left(l_{t} ; m_{t}\right)}^{b_{1}, \cdots, b_{t+}+m_{t}}\left(z_{i}\right) \tilde{F}_{\left(l_{u} ; m_{u}\right)}^{\left.c_{1}, \cdots, c_{l u}\right)}
\end{aligned}
$$

$\mathrm{CP}(1)$ model in two dimensions

HOTRG vs. Monte Carlo (Metropolis)

CP(1) model vs. O(3) model

J. Unmuth-Yockey, Y. Meurice, J. Osborn and H. Zou, arXiv:1411.4213 [hep-lat].
In the limit $\beta \rightarrow \infty, \quad \frac{1}{\beta}+E_{O(3)}(\beta)=E_{C P(1)}(\beta)+6$

Summary

- We derive a tensor network representation of $\mathrm{CP}(\mathrm{N}-1)$ model (with the θ term).

TRG $\mathrm{CP}(1) \longleftrightarrow$ TRG $\mathrm{O}(3) \quad(\beta \gg 1)$
 MC CP(1)

- Next, we will do implementation including the θ term.

